
Homomorphic Encryption

Based Secure Genome Data Analysis

Miran Kim? and Kristin Lauter†

?Seoul National University
†Microsoft Research

iDASH Privacy&Security Workshop, March 16, 2015

1 / 16

Secure Outsourcing GWAS

2 / 16

Minor Allele Frequency

There are 200 people, and each of them has 311 genotypes.

Each genotype has two kinds of SNPs.

Data Encoding

For a fixed genotype, suppose that 200 people have “AT, AT, AA,
. . ., TT”. Then the encoding method is as follows:

I If the pair consists of different SNPs (AT), then encode it into ‘1’.
I The first pair with the same SNP (AA) is encoded into ‘0’.
I Then the other one (TT) is encoded into ‘2’.

(⇒ the encoded value means the number of ‘T’ in the individual SNPs.)

P1 :
Gi

1

G1

AT

2

G2

2

G3

0 1

G311

· · · · · · · · ·0 0
...

P200 : 2 0 2 1 1· · · · · · · · ·0 0

TT

3 / 16

Minor Allele Frequency

There are 200 people, and each of them has 311 genotypes.

Each genotype has two kinds of SNPs.

Data Encoding

For a fixed genotype, suppose that 200 people have “AT, AT, AA,
. . ., TT”. Then the encoding method is as follows:

I If the pair consists of different SNPs (AT), then encode it into ‘1’.
I The first pair with the same SNP (AA) is encoded into ‘0’.
I Then the other one (TT) is encoded into ‘2’.

(⇒ the encoded value means the number of ‘T’ in the individual SNPs.)

P1 :
Gi

1

G1

AT

2

G2

2

G3

0 1

G311

· · · · · · · · ·0 0
...

P200 : 2 0 2 1 1· · · · · · · · ·0 0

TT

3 / 16

Minor Allele Frequency

There are 200 people, and each of them has 311 genotypes.

Each genotype has two kinds of SNPs.

Data Encoding

For a fixed genotype, suppose that 200 people have “AT, AT, AA,
. . ., TT”. Then the encoding method is as follows:

I If the pair consists of different SNPs (AT), then encode it into ‘1’.
I The first pair with the same SNP (AA) is encoded into ‘0’.
I Then the other one (TT) is encoded into ‘2’.

(⇒ the encoded value means the number of ‘T’ in the individual SNPs.)

P1 :
Gi

1

G1

AT

2

G2

2

G3

0 1

G311

· · · · · · · · ·0 0
...

P200 : 2 0 2 1 1· · · · · · · · ·0 0

TT

3 / 16

Minor Allele Frequency
Encryption & Evaluation

P1 : 1

G1

2

G2

1

G311

· · · 0 −→
Enc

C1

...

P200 : 2 0 1· · · 0 −→ C200+

· · · 0 ←−
Dec

∑200
i=1 Ci

#(T)

(We can perform the aggregate operations simultaneously for all the genotypes.)

Decryption
I Decrypt the ciphertext “

∑200
i=1 Ci” with the secret key.

I Let `i be the value in the i ’th slot.

Decoding
I For 1 ≤ i ≤ 311, if `i > 200, then `i ← (400− `i).
I The minor allele frequency of the genotype Gi is

(
`i
400

)
.

4 / 16

Minor Allele Frequency
Encryption & Evaluation

P1 : 1

G1

2

G2

1

G311

· · · 0 −→
Enc

C1

...

P200 : 2 0 1· · · 0 −→ C200+

· · · 0 ←−
Dec

∑200
i=1 Ci

#(T)

(We can perform the aggregate operations simultaneously for all the genotypes.)

Decryption
I Decrypt the ciphertext “

∑200
i=1 Ci” with the secret key.

I Let `i be the value in the i ’th slot.

Decoding
I For 1 ≤ i ≤ 311, if `i > 200, then `i ← (400− `i).
I The minor allele frequency of the genotype Gi is

(
`i
400

)
.

4 / 16

Chi-squared Test

Data Encoding

I For each genotype, encode the given SNPs of case group and control
group.

* Note that the result of chi-squared test is

n(ad − bc)2

r · s · g · k
=

800 (a(400− c)− c(400− a))2

400 · 400 · g · k

=
800 (a− c) 2

(a + c)(800− (a + c))

where ‘a’ and ‘c ’ are the allele counts of some SNP in case and
control group.

5 / 16

Chi-squared Test

Data Encoding

I For each genotype, encode the given SNPs of case group and control
group.

* Note that the result of chi-squared test is

n(ad − bc)2

r · s · g · k
=

800 (a(400− c)− c(400− a))2

400 · 400 · g · k

=
800 (a− c) 2

(a + c)(800− (a + c))

where ‘a’ and ‘c ’ are the allele counts of some SNP in case and
control group.

5 / 16

Chi-squared Test

Evaluation

Let us denote Ci and C ′i the ciphertexts for the case&control groups.

I Evaluate
∑200

i=1 Ci (
let
= Ccase) and

∑200
i=1 C

′
i (

let
= Ccont).

I Compute “Ccase − Ccont” and “Ccase + Ccont”

Decryption

For the message space Zt = [0, t),

I den
let
= Dec(Ccase + Ccont) = a + c (< t)

I num
let
= Dec(Ccase − Ccont) =

{
a− c if a > c ,

(a− c) + t otherwise.

Decoding

I If num > t
2 , then num← (num− t).

I The result of chi-squared test is 800(num)2

(den)(800−den)

6 / 16

Chi-squared Test

Evaluation

Let us denote Ci and C ′i the ciphertexts for the case&control groups.

I Evaluate
∑200

i=1 Ci (
let
= Ccase) and

∑200
i=1 C

′
i (

let
= Ccont).

I Compute “Ccase − Ccont” and “Ccase + Ccont”

Decryption

For the message space Zt = [0, t),

I den
let
= Dec(Ccase + Ccont) = a + c (< t)

I num
let
= Dec(Ccase − Ccont) =

{
a− c if a > c ,

(a− c) + t otherwise.

Decoding

I If num > t
2 , then num← (num− t).

I The result of chi-squared test is 800(num)2

(den)(800−den)

6 / 16

Secure Comparison

between Genomic Data

7 / 16

Hamming Distance

Two individuals have genotypes over many SNPs. For a fixed
genotype,

d =

{
1 if (S1 = null) || (S2 = null) || (S1.alt 6= S2.alt)

0 otherwise

x [j]
let
= j-th bit of x , starting with the least significant bit of x .

⊕ : XOR gate (= Add over Z2), ∧ : AND gate (= Mult over Z2).

SVTYPE d

SV1 or SV2 = INS/DEL 0

SV1 or SV2 = null 1

SV1 and SV2 = SNP/SUB EQU(S1,S2)⊕ 1

where EQU(S1, S2) =

{
1 if S1 = S2

0 o.w,
= ∧µj=1 (S1[j]⊕ S2[j]⊕ 1)

We need the encodings to determine ‘null’ and ‘INS/DEL’.

8 / 16

Hamming Distance

Two individuals have genotypes over many SNPs. For a fixed
genotype,

d =

{
1 if (S1 = null) || (S2 = null) || (S1.alt 6= S2.alt)

0 otherwise

x [j]
let
= j-th bit of x , starting with the least significant bit of x .

⊕ : XOR gate (= Add over Z2), ∧ : AND gate (= Mult over Z2).

SVTYPE d

SV1 or SV2 = INS/DEL 0

SV1 or SV2 = null 1

SV1 and SV2 = SNP/SUB EQU(S1,S2)⊕ 1

where EQU(S1, S2) =

{
1 if S1 = S2

0 o.w,
= ∧µj=1 (S1[j]⊕ S2[j]⊕ 1)

We need the encodings to determine ‘null’ and ‘INS/DEL’.

8 / 16

Hamming Distance

Data Encoding

I Clean two datasets using POS, then make the merged list L.

I For i ∈ [1,#(L)],

define mi =

{
1 if POSi ∈ L

0 otherwise
and hi =

{
0 if SVi = INS/DEL

1 otherwise

⇒ (m1 ⊕m2) = 1 iff (SV1,i = null) or (SV2,i = null)

(h1 ∧ h2) = 0 iff (SV1,i = INS/DEL) or (SV2,i = INS/DEL)

I Encode the SNP string as follows:

A→ 00,G → 01,C → 10,T → 11,

F Each SNP is encoded and concatenated each other.

F Pad ‘1’ at the end of the string, and ‘0’ to make 21 bit string, say Si .

F In the case of missing genotype, it is encoded as ‘0’ string.

F For example, ‘GTA’ is encoded as ‘01||11||00||1 0 . . . 00︸ ︷︷ ︸
14

’.

9 / 16

Hamming Distance

Data Encoding

I Clean two datasets using POS, then make the merged list L.

I For i ∈ [1,#(L)],

define mi =

{
1 if POSi ∈ L

0 otherwise
and hi =

{
0 if SVi = INS/DEL

1 otherwise

⇒ (m1 ⊕m2) = 1 iff (SV1,i = null) or (SV2,i = null)

(h1 ∧ h2) = 0 iff (SV1,i = INS/DEL) or (SV2,i = INS/DEL)

I Encode the SNP string as follows:

A→ 00,G → 01,C → 10,T → 11,

F Each SNP is encoded and concatenated each other.

F Pad ‘1’ at the end of the string, and ‘0’ to make 21 bit string, say Si .

F In the case of missing genotype, it is encoded as ‘0’ string.

F For example, ‘GTA’ is encoded as ‘01||11||00||1 0 . . . 00︸ ︷︷ ︸
14

’.

9 / 16

Hamming Distance

Encryption

I Embed the data of P1(= m1,i , h1,i ,S1,i) and P2 (= m2,i , h2,i ,S2,i) into
the plaintext slots in a bit-by-bit manner.

I Encrypt the slots with the public key.

m1 · · ·

h1 · · ·

S1[1] · · ·
...

...
...

S1[21] · · ·

#(L)

10 / 16

Hamming Distance

Evaluation
I Evaluate the following binary circuit over encrypted data:

(h1,i ∧h2,i)∧
(

(m1,i ⊕m2,i)⊕
(
m1,i ⊕m2,i ⊕1

)
∧
(
EQU(S1,i ,S2,i)⊕1

))
I Take m = 8191 so that we can embed 630 messages into one ciphertext

and perform the operations simultaneously for all the messages.

Decryption
I Decrypt the evaluated value and let `i the value in the i ’th slot.

Decoding
I Note that `i is the Hamming distance result of i ’th genotype.

I Compute
∑#(L)

i=1 `i .

11 / 16

Edit Distance

For each genotype, we let

n =

{
len(S .alt) if SV = SNP/SUB/INS

len(S .ref) if SV = DEL

d =

{
0 if (S1.ref = S2.ref) & (S1.alt = S2.alt)

max(n1, n2) otherwise

SVTYPE d

(SV1 = INS, SV2 6= INS)||(SV1 6= INS, SV2 = INS) max(n1, n2)

Otherwise max(n1, n2) ∧ (EQU(S1.alt,S2.alt)⊕ 1)

I We don’t need the reference comparison anymore.

I We need an encoding which determine whether the genotype is INS or
not.

12 / 16

Edit Distance

For each genotype, we let

n =

{
len(S .alt) if SV = SNP/SUB/INS

len(S .ref) if SV = DEL

d =

{
0 if (S1.ref = S2.ref) & (S1.alt = S2.alt)

max(n1, n2) otherwise

SVTYPE d

(SV1 = INS, SV2 6= INS)||(SV1 6= INS, SV2 = INS) max(n1, n2)

Otherwise max(n1, n2) ∧ (EQU(S1.alt,S2.alt)⊕ 1)

I We don’t need the reference comparison anymore.

I We need an encoding which determine whether the genotype is INS or
not.

12 / 16

Edit Distance

Data Encoding
I Clean two datasets using POS, then make the merged list L.

I For i ∈ [1,#(L)], define ei =

{
1 if SVi = INS,

0 o.w.

⇒ (e1 ⊕ e2 ⊕ 1) = 1 iff ((SV1,i = I,SV2,i 6= I) or (SV1,i 6= I,SV2,i = I))

I Encode the SNP string as Si . (The missing genotype is encoded as ‘0’)

I Encode the length of SNP string, say ni .

Encryption
I Embed the data of P1(= e1,i ,S1,i , n1,i) and P2 (= e2,i ,S2,i , n2,i) into

the plaintext slots in a bit-by-bit manner.

I Encrypt the slots with the public key.

13 / 16

Edit Distance

Evaluation

For µ-bit integer x and y,

I C(x , y) =

{
1 if x < y

0 o.w.,
= cµ

F c1 = (1⊕ x [1])∧y [1],

F cj =
(
(1⊕ x [j]) ∧ y [j]

)
⊕
(
(1⊕ x [j]⊕ y [j])∧cj−1

)
for 2 ≤ j ≤ µ

I max(x , y)[j] =

{
y [j] if x < y ,

x [j] o.w.,

=
(
(1⊕ C(x , y)) ∧ x [j]

)
⊕
(
C(x , y) ∧ y [j]

)
I For i ∈ [1,#(L)] and j ∈ [1, µ], evaluate the circuits homomorphically:((

EQU(S1,i ,S2,i) ∧ (e1,i ⊕ e2,i ⊕ 1)
)
⊕ 1
)
∧ max(n1,i , n2,i)[j]

14 / 16

Edit Distance

Decryption

I Decrypt the evaluated values, and let `i,j the i ’th value in the j ’th slot.

1’th bit: · · ·

µ’th bit: · · ·

i ’th genotype

j ’th bit
...

...
...

Decoding

I `i
let
=
∑µ

j=1 `i,j · 2j−1 is the Edit distance result of i ’th genotype.

I Compute
∑#(L)

i=1 `i .

15 / 16

16 / 16

