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IDASH Privacy & security workshop 2015
Secure genome analysis Competition

* Registration: Jan 31 2015
e Submission deadline: Feb 28 2015

* Workshop: March 16, 2015
UCSD Medical Education and Telemedicine Building ROOM 141/143

* Media coverage in GenomeWeb, Donga Science, Nature




Donga Science, March 13, 2015
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Why the excitement?

Fundamental Problem: privacy protection
* Burgeoning genome sequencing capability
* Explosion of scientific research possible
e High risk for personal privacy

Fundamental Progress through interaction
* Computer Scientists
* Mathematicians
* Bioinformaticians
e Policy-makers



Data Breaches: Privacy Rights

Cleari ngL ouse
* 815,842,526 RECORDS BREACHED

from 4,495 DATA BREACHES made public since 2005

Morgan Stanley

January 5, 2015 New York, New York BSF INSD 350,000

An employee of Morgan Stanley stole customer information on 350,000 clients including
account numbers. Additional information on what other information was captured has not yet
been released. Files for as many as 900 clients ended up on a website.

NVIDIA Corporation

January 6, 2015 Santa Clara, CA BSO HACK Unknown

NVIDIA Corporation suffered a data breach when hackers infiltrated their network and stole
employee usernames and passwords.

The company is requesting that those affected change their password and be cautious of
"phishing" emails that look like they are coming from a colleague or friend requesting sensitive
information.




Data access and sharing requirements

* Allow access to researchers to large data sets

e Secure Genome Wide Association Studies (GWAS)

e Desire for centrally hosted, curated data

* Provide services based on genomic science discoveries

Two scenarios for interactions:

 Single data owner (one patient, one hospital)
* Multiple data owners (mutually distrusting)



Two Challenges!

Challenge 1:

Homomorphic encryption (HME) based secure genomic data analysis
* Task 1: Secure Outsourcing GWAS
* Task 2: Secure comparison between genomic data

Challenge 2:
Secure multiparty computing (SMC) based secure genomic data analysis

(two institutions)
* Task 1: Secure distributed GWAS
* Task 2: Secure comparison between genomic data



Private cloud services

Preserve privacy through encryption! (clients keep the keys!)

Scenarios:

* Direct-to-patient services
* Personalized medicine
* DNA sequence analysis
* Disease prediction
* Hosted databases for enterprise
* Hospitals, clinics, companies
* Allows for third party interaction



Outsourcing computation
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Scenario for genomic data

Untrusted cloud service
Stores, computes on encrypted data

Trusted party R Researcher:

hosts data and l’equelfts ?ncryp_]’i_ed
regulates access Requests for decryption of results reigmspz t:t?fr?; Ic

(requires a policy)



Multi-party computation for genomic data

Untrusted cloud service
Stores, computes on encrypted data

Researcher Researcher



Techniques:

* Homomorphic Encryption
* Paillier encryption (additive operations)
e Lattice-based encryption (additions and multiplications)

* Multi-party Computation
e Optimized Garbled Circuits
e Secret Sharing techniques



What are the Costs”? Challenges?
Obstacles?

For homomorphic encryption
 Storage costs (large ciphertexts)
* New hard problems (introduced 2010-2015)
e Efficiency at scale (large amounts of data, deep circuits)

For Garbled Circuits

* High interaction costs
* Bandwidth use

* Integrate with storage solutions



What kinds of computation”?

Building predictive models

Predictive analysis

* C(Classification tasks
 Disease prediction
 Sequence matching

Data quality testing
Basic statistical functions
Statistical computations on genomic data



Encrypt everything?

* Protect outsourced data by encrypting everything

« “Conventional” encryption methods do not allow any
computation on the encrypted data
without using the secret key and decrypting it

 Homomorphic encryption schemes allow specific operations
on encrypted data with only public information



Protecting Data via Encryption

Homomorphic encryption

Put your gold in a locked box.

1.
2. Keep the key.

3. Let your jeweler work on it through a glove box.
4,

Unlock the box when the jeweler is done!




Homomorphic Encryption: addition

compute -
a,b - a+b

encrypt encrypt
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Homomorphic Encryption: multiplication

compute -
a,b - axb

encrypt encrypt

v v

\ 4

Ela), Elb) compute




Operating on encrypted data

“Doubly” homomorphic encryption

6 + 10 (6 =« 10)/2 =

—on

3+5= 305 = 1

American Scientist, Sept/Oct 2012



Fully Homomorphic Encryption (FHE)

FHE enables unlimited computation on encrypted data
* Public operations on ciphertexts:

+ (Enc(mdl ), Enc(mi2 ))—Enc(mil +ml2 )
(Enc(mdl ), Enc(md2 ))—=Enc(mll -mi2 )




Fully Homomorphic Encryption (FHE)

FHE enables unlimited computation on encrypted data
« Public operations on ciphertexts:

+ (Enc(mdl ), Enc(mid2 ))—Enc(mil +mi2 )
(Enc(mil ), Enc(mi2 ))—Enc(mil -mi2 )

« For data encrypted bitwise (i1 ,mi2 €{0,1}),
operations »i1+miz and »u-mi2 are bitwise (XOR and AND)

« Get arbitrary operations via binary circuits.



Fully Homomorphic Encryption

[BGNO5] — unlimited addition + 1 multiplication (pairing-based)
[Gentry09] first scheme with unllmlted addmons and multiplications
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Much progress since then...



FHE Schemes

* Small Principal Ideal Problem (SPIP)
* Gen’09, SV'10, GH’11

* Approximate GCD
 vyDGHV’10, CMNT’11, CNT'12, CCKLLTY’13

* LWE/RLWE
*BV’'11a, BV'11b, BGV’'12, GHS'12,LTV’12, Bra’12, FV’12, BLLN'13

Compare to other public key systems:
RSA (1975), ECC (1985), Pairings (2000)

HElib (IBM) publically available implementation




FHE schemes do exist!

 BUT FHE on binary circuits with bitwise encryption is
extremely inefficient:

* huge ciphertexts,

» costly noise handling,
* large overhead in storage space and computation time



Lattice-based Crypto

* Alternative Public Key Crypto
* RSA, Diffie-Hellman, ECC, Pairings, ...

* SECURITY:

* best attacks take exponential time
e secure against quantum attacks (so far...)

* Hard Problemes:
e approximate SVP (in the worst case) on ideal lattices in R
» search version of Ring-based Learning With Errors (R-LWE)
e Further reductions: D-RLWE, PLWE



Lattice with a Good (short) Basis

L = Zby + Zbs



Lattice with a Bad Basis

L = Zbs + 7y



|ldea of new schemes

* Lattice vectors = coefficients of polynomials
* Polynomials can be added and multiplied
* Encryption adds noise to a “secret” inner product

* Decryption subtracts the secret and then the noise becomes easy to
cancel

* Hard problem is to “decode” noisy vectors
e Uses a discretized version of the problem
* If you have a short basis, it is easy to decompose vectors



Ring-based Learning With Errors (R-
LWE)

* Let =1 mod 27z be a prime, Zlg =7/ 4. Consider the polynomial ring
Rlg=Zlqg [x]/(xTn+1).
* Given a secret element s€2Jg and a number of pairs

(ali,bli=alis+eli),

* where ali < Rlg are chosen uniformly at random, and eli «Dlo (Rlg) are

chosen coefficient wise according to the discrete Gaussian error distribution DJo (
Z1q).

* R-LWE problem: Find the secret s (search), or distinguish whether a list of pairs
(ali,bli) was chosen as described above or whether both al7,bli < Rlgwere
chosen uniformly at random (decision).



Secret-key Encryption from R-LWE

IH

 Gen(172):Sample a “small” ring element s<DJo (Rlg).

Secret key:  sk=us.

* Enc(sk,72): m: encoding of message 7:€{0,1} 77 as a “smal
element of Z4g, ais uniformly random in #Alg,
eisa “small“ring element eDJo (Rlg).

Encryption: c=(a, ast+2e+m).
 Dec(sk,(a,b)): Output (/—as) mod 2.

This scheme can be turned into a fully homomorphic encryption
scheme, that can compute any function on encrypted data.

IH



Homomorphic Encryption

* What are the right parameters for a given security level?

* To estimate secuirity, look at runtime of possible attacks:
Combine lattice-basis reduction (LLL, BKZ) and bounded-distance
decoding/distinguishing attacks

« Parameters with security > 128 bits for somewhat homomorphic PK
scheme (strongly depends on number of multiplications)

1 2048 58 bits 30 KB 2 KB 2 30 KB
10 8192 354 bits 720 KB 8 KB 2 720 KB

32 65536 1298 bits 20 MB 66 KB =20 MB



Homomorphic Encryption

» Reference implementation of somewhat homomorphic PK scheme in computer
algebra system Magma

* Experimentation phase, still search for better parameters, more optimizations
* Timing for n = 2048, q has 58 bits, 1 mult

Intel Core 2 @ 2.1 GHz

SH_Keygen 250 ms
SH_Enc 24 ms
SH_Add 1 ms
SH_Mul 41 ms
SH_Dec (2-element ciphertext) 15 ms

SH_Dec (3-element ciphertext) 26 ms



Improvements and optimizations:

 Pack more data into ciphertexts [GHS12]
» Use leveled homomorphic schemes (allows limited levels)

* Use arithmetic circuits and restrict to computations with
low multiplicative depth [LNV11]

* Integer encoding improvements [LNV11]

This comes at a cost: restrictions on the type of computations
that can be done!



What can we compute with FHE?

Requires bit-wise encoding and encryption:

AES decryption [GHS’13], [CCKLLTY’13]
(GHS’13 uses BGV’12, CCKLLTY’13 uses Approximate GCD)

Comparison circuits
Sequence Matching: Edit distance, Smith-Waterman [CLL14]

Integer and real number encoding via bit-decomposition:

Machine Learning algorithms (real numbers) — [GLN12]
* Uses [BV11] (without relinearization, ie. ciphertexts grow)

Approximate Logistic Regression — [BLN13]
Statistics on Genomic Data —[LLN14]



Homomorphic Encryption from RLWE

« Uses polynomial rings as plaintext and ciphertext spaces

R=Z[X])(XTn+1), n=2Tk

* Work with polynomials in # modulo some sz

Homomorphic operations ( ==/ ) correspond to polynomial
operations (add/mult) in #
+= is relatively efficient, % is costly

Use this structure to encode and work with your data



Encoding real numbers

LNV’11 Encoding - Integer a
Bit decomposition: a =

Define its encoding to be m = ER

After decryption, evaluate m at x=2
GLN, BLN - Real number b up to precision s
Encode 10%b as above
E.g. encode it with precision s=2 as
Encode(314) =x3+ x>+ x4+ x3+ 2

Need to scale computation accordingly...



"Practical Homomorphic Encryption”

e do not need *fully* homomorphic encryption

* “somewhat” does not mean *partially*

* encode integer information as “integers”

* not bit-by-bit

 several orders of magnitude speed-up

* do not need deep circuits to do a single multiplication

* do not need boot-strapping

* need to keep track of parameters to ensure correctness and security



HE Performance

80-bit security
 Parameter set |: #=4096, 4~21192, Cciphertext ~100ks
« Parameter set |l #=8192, g~21384, ciphertext ~4o0ks

Operation | KeyGen | Encrypt __Add_|_Mult_ Decrypt_

Parameters | 3.6s 0.3s 0.001s 0.05s 0.04s
Parameters || 18.1s 0.8s 0.003s 0.24s 0.26s

Proof-of-concept implementation: computer algebra system Magma,
Intel Core i7 @ 3.1GHz, 64-bit Windows 8.1



Machine Learning for Predictive Modeling

Supervised Learning
Goal: derive a function from labeled training data
Outcome: use the “learned” function to give a prediction (label) on new data

Training data represented as vectors.



Linear Means Classifier (binary)

* Divide training data into (two) classes according to their label
 Compute mean vectors for each class
 Compute difference between means

* Compute the midpoint
* Define a hyperplane between the means, separating the two classes
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Binary classification example

 FDA data set
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Machine Learning on Encrypted Data

* Implements Polynomial Machine Learning Algorithms
* Integer Algorithms
* Division-Free Linear Means Classifier

* Fisher’s Linear Discriminant Classifier



DFI-LM experiments

(P) g= 218 t =21 &5 =16, d = 4096

SH.Keygen SH.Enc  SH.Dec{2) SH.Dec{(3) SHAdd SH.Mult

156 379 29 52 1 106

Timing in ms in Magma on a single core of an Intel Core i5 CPUB50
@ 3.2 GHz. 128-bit security with distinguishing advantage 27°4.

data # features algorithm train  classify

surrogate 2 linear means | 230 235
Iris 4 linear means | 510 496




Statistics on Genomic Data

Pearson Goodness-Of-Fit Test

o checks data for bias (Hardy-Weinberg equilibrium)
Cochran-Armitage Test for Trend

oDetermine correlation between genome and traits
Linkage Disequilibrium Statistic

o Estimates correlations between genes

o Estimation Maximization (EM) algorithm for haplotyping



Hardy-Weinberg Equilibrium (HWE)

o Need to determine if data set is unbiased
* Check that allele frequencies are independent

Paa = Pa” Paa = 2PaP, Paa = Po7
e Observed counts: N,,, N,., N_,
=2N,, + N
pA AAN aa pa — 1 - pA
e Expected counts: E,, , E,., E_,
Ean = NP, Era = 2Np,p, N, = Np,’

Pearson X2= (Ean— NAA)2 + (Ena — NAa)2 + (E..— Naa)2
Test Enn E.. E
deg4inN,,, N, , N

Aa? aa




[Enry]

Input Data: genotypes

2 questions:
o How to encode genotypes (AA,Aa,aa)

© How to obtain observed counts from encrypted genotypes?




Encoding and encrypting of genotype data
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Computing genotype counts
H+ e+ =
s o

* Only homomorphic additions
* Cost linear in size of data sample

Cl+ [+ [C+ El+[E
E+E+[E+[E+[
Cl+El+[El+ [E+[E

if |
| ¥ EEN
% EEN

‘ /‘L
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g

N
N



Pearson goodness-of-fit test

Tests for Hardy-\Weinberg Equilibrium, i.e. whether allele
frequencies are statistically independent
PIAA =plAT2 , plAda=2plApla, plaa=plal?

PIAA=NIAA /N, plAa=NIlAa /N, plaa=Nlaa /N
 Observed counts: wvisa, vida, viaa,
PIA=2NIAA+NIlAa /2N, pla=1—plA

* EXpeCted COUNtS: £id44=NpiA12 , ElAda=2Npld pla, Elaa=Nplal2



Pearson goodness-of-fit test

 Compute the 12 test statistic

XT2 =(NVIAA —FELAA)T2 /ELAA +(VidAa—ElAa )T2 /ElAa +(Niaa—Flaa )T2 /Elaa

* Problem: Arithmetic circuits over » do not allow divisions
 Rewrite the formula to avoid divisions



Modified algorithm

It turns out that
X2 =a/2N A/81 +1/842 +1/513 ),
where

P2 =QRNIAA+NIAa )2Nlaa+NIlAa ), P33 =20Q2Nlaa+NlAa )T2

« Return encryptions of values «, i pi2 23,7
xr2 IS computed after decryption



Genetic algorithm performance

80-bit security
 Parameter set |: 7=4096, 4~21192, Ciphertext ~1o0ks
« Parameter set |l: »=8192, y~21384, ciphertext ~4o0ks

Algorithm EM (iterations) CATT

Parameters | 0.3s 0.6s 1.1s - 0.2s 1.0s
Parameters | 1.4s 2.3s 45s 69s O0.7s 3.6S

Proof-of-concept implementation: computer algebra system Magma,
Intel Core i7 @ 3.1GHz, 64-bit Windows 8.1



Performance

e Data quality (Pearson Goodness-of-Fit)
~ 0.3 seconds, 1,000 patients
* Predicting Heart Attack (Logistic Regression)
~ 0.2 seconds
* Building models (Linear Means Classifier)
~0.9 secs train, classify: 30 features, 100 training samples
* Sequence matching (Edit distance)

~27 seconds amortized, length 8
Corei7 3.4GHz

80-bit security



Joint work with:

e Can Homomorphic Encryption be Practical?
Kristin Lauter, Michael Naehrig, Vinod Vaikuntanathan, CCSW 2011

e ML Confidential: Machine Learning on Encrypted Data
* Thore Graepel, Kristin Lauter, Michael Naehrig, ICISC 2012

e Predictive Analysis on Encrypted Medical Data

Joppe W. Bos, Kristin Lauter, and Michael Naehrig, Journal of Biomedical Informatics, 2014.

* Private Computation on Encrypted Genomic Data
Kristin Lauter, * Adriana Lopez-Alt, * Michael Naehrig, GenoPri2014, LatinCrypt2014.

* Homomorphic Computation of Edit Distance

Jung Hee Cheon, Miran Kim, Kristin Lauter, in submission.




Challenges for the future:

* Public Databases: multiple patients under different keys
* More efficient encryption at scale

* Integrate with other crypto solutions

* Expand functionality

e Attack underlying hard problems



