Homomorphic Encryption for Genomic Analysis

Hoon Cho (MIT) and David Wu (Stanford)
March, 2015

Homomorphic Encryption

Homomorphic encryption (HE): encryption schemes that support computation on ciphertexts

Consists of three functions:

Must satisfy usual notion of semantic security

Homomorphic Encryption

Homomorphic encryption: encryption schemes that support computation on ciphertexts

Consists of three functions:

$$
\begin{aligned}
& c_{2}=\mathrm{Enc}_{p k}\left(m_{2}\right) \\
& c_{1}=\mathrm{Enc}_{p k}\left(m_{1}\right) \\
& \operatorname{Eval}_{f} \text { Dec } \\
& \operatorname{Dec}_{s k}\left(\operatorname{Eval}_{f}\left(e k, c_{1}, c_{2}\right)\right)=f\left(m_{1}, m_{2}\right)
\end{aligned}
$$

Fully Homomorphic Encryption (FHE)

Many homomorphic encryption schemes:

- ElGamal: $f\left(m_{0}, m_{1}\right)=m_{0} m_{1}$
- Paillier: $f\left(m_{0}, m_{1}\right)=m_{0}+m_{1}$

Fully homomorphic encryption: homomorphic with respect to two operations: addition and multiplication

- [BGNO5]: one multiplication, many additions (SWHE)
- [Gen09]: first FHE construction from lattices

Task 1: Computing GWAS

$\begin{array}{llllll}\text { Case: } & \text { AA } & \text { AG } & \text { AA } & \text { AG } & G G \\ \text { Control: } & \text { AG } & \text { AG } & \text { GA } & \text { GG } & G G\end{array}$

Minor Allele Frequency: $\frac{\min \left(n_{A}, n_{G}\right)}{n_{A}+n_{G}}$
χ^{2}-statistic: $\chi^{2}=\sum \frac{(\text { Obs-Exp })^{2}}{\operatorname{Exp}}$

Genotypes for different individuals at a fixed location in the genome

Limitations of FHE

In theory: SWHE/FHE can evaluate arbitrary functions

But many limitations in practice:

- Computation must be expressed as an arithmetic circuit: thus, division is hard
- Performance degrades rapidly in multiplicative depth of circuit

Striking a Balance

Minor Allele Frequency: $\frac{\min \left(n_{A}, n_{G}\right)}{n_{A}+n_{G}}$
χ^{2}-statistic: $\chi^{2}=\sum \frac{(\text { Obs-Exp })^{2}}{\operatorname{Exp}}$

Observation: allele counts are sufficient for computing MAF and χ^{2}

Solution: delegate aggregation to the cloud, client computes the statistical quantities of interest

Practical Outsourcing

Solution: delegate aggregation to the cloud, client computes the statistical quantities of interest

Solution enables use of symmetric primitives (e.g., AES)

Symmetric primitives + arithmetic faster than public key decryption

Symmetric Encryption

each genotype represented as a vector of counts
encrypt entries by adding independent, blinding factors from \mathbb{Z}_{n}

Symmetric Encryption

Sum \longrightarrow| $3+r_{A}+r_{A}^{\prime}$ | $0+r_{c}+r_{C}^{\prime}$ | $1+r_{G}+r_{G}^{\prime}$ | $0+r_{T}+r_{T}^{\prime}$ |
| :--- | :--- | :--- | :--- |

decryption: compute blinding factors and subtract

Symmetric Encryption

$$
\begin{aligned}
& \text { generate blinding factors using } \\
& \qquad \operatorname{PRF}(k, \text { tag })
\end{aligned}
$$

tag: SNP id\|group id ||subject id

Symmetric Encryption

Homomorphic operations consist of only additions

Encryption and decryption are symmetric primitives

Further Improvements

Client must do linear work to decrypt

- Alternative: if the data comes in batches, the client can precompute the counts per batch during encryption
- Decryption time proportional to number of batches

Performance

Timing (in seconds) for computing MAF $+\chi^{2}$ statistics (500 subjects)

\# SNPs	Encryption	Aggregation	Decryption
100	0.17	0.02	0.15
1,000	1.68	0.17	1.42
10,000	17.47	1.59	15.06
100,000	179.53	17.72	145.52

Only a few hundred lines to implement!

Task 2: Hamming Distance Computation


```
chr1:100011666: (T -> C)
chr1:101265309: (C -> T)
chr1:10165300: (T T C)
    and so on...
```

compute the Hamming distance between two sequences (represented as edits with respect to a reference genome)

Task 2: Hamming Distance Computation

```
chr1:101088593: (C -> T)
chr1:101265309: (C -> T)
chr1:10165300: (T -> G)
    and so on...
    \longrightarrowATGCTTAGTGGC...
```

chr1:100011666: ($\mathrm{T} \rightarrow \mathrm{C})$
chr1:101265309: ($\mathrm{C} \rightarrow \mathrm{T}$)
chr1:10165300: $(\mathrm{T} \rightarrow \mathrm{C})$
and so on...
\longrightarrow ACGCTTGGTGGC...
\longrightarrow ACGCTTGGTGGC...
naïve method: expand sequences, pairwise equality test

Task 2: Hamming Distance Computation

```
chr1:101088593: (C }->\mathrm{ T)
chr1:101265309:(C }->\mathrm{ T)
chr1:10165300: (T -> G)
    and so on...
```

 \(\longrightarrow\) ATGCTTAGTGGC...
 sequences too long: over 3 billion base pairs in human genome
desire: protocol with performance proportional to number of edits

Task 2: Hamming Distance Computation

```
chr1:101088593: (C -> T)
chr1:101265309: (C -> T)
chr1:10165300: (T T G)
and so on...
```

```
chr1:100011666: (T -> C)
chr1:101265309:(C T T)
chr1:10165300: (T T C)
    and so on...
```

Genome A
Genome B
view genomes as sets of edits from reference:

$$
d_{H}(A, B)=|A|+|B|-2 \cdot|A \cap B|
$$

Task 2: Hamming Distance Computation

Problem reduces to set intersection:

$$
d_{H}(A, B)=|A|+|B|-2 \cdot|A \cap B|
$$

Slight caveat:
same location, different edit: contribution to Hamming distance should be 1

Task 2: Hamming Distance Computation

Formulate as two set intersection problems:

$$
d_{H}(A, B)=|A|+|B|-|A \cap B|-\left|A^{\text {loc }} \cap B^{\text {loc }}\right|
$$

Homomorphic Set Intersection

```
chr1:101088593: (C -> T)
chr1:101265309: (C -> T)
chr1:10165300: (T }->\mathrm{ G)
    and so on...
```

```
chr1:100011666: (T -> C)
chr1:101265309: (C -> T)
chr1:10165300: (T }->\mathrm{ ( }
    and so on...
```

Equality function: $f(x, y)=\mathbf{1}\{x=y\}$

Simple solution: sum over pairwise equality tests

Homomorphic Set Intersection

Homomorphic evaluation of equality function:

If $x, y \in\{0,1\}$,

$$
f(x, y)=\mathbf{1}\{x=y\}=1-(x-y)^{2}
$$

Easy to generalize to n bit integers, but requires degree $2 n$ homomorphism

Homomorphic Set Intersection

Hashing to decrease number of pairwise comparisons

hash elements into buckets, pairwise equality test on hashed values within buckets

Homomorphic Set Intersection: Tradeoffs

More buckets \rightarrow lower collision rate, possibly more ciphertexts

More bits \rightarrow lower collision rate, more homomorphism for equality test
Tunable parameters:

- number of buckets
- bits used to represent each element in a bucket

Larger buckets \rightarrow less likely that bucket overflows

- bucket size

Performance

Timing (in seconds) for homomorphic set intersection using HELib:

Size of Sets	Key Generation	Hashing	Encryption	Computation	Encryption
1,000	23.80	0.007	31.97	104.16	1.78
5,000	23.36	0.025	95.38	475.37	1.78
10,000	27.14	0.093	176.50	936.64	1.91

Primary drawback: key sizes + ciphertext sizes very large (several hundred MB to just over 1 GB)

Conclusions

Task 1: Most efficient solution is to compute counts symmetric primitives suffice

Task 2: Hashing-based homomorphic set intersection can handle edit-sets with up to ten thousand elements, but with large parameter sizes

