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Homomorphic Encryption

Homomorphic encryption (HE): encryption schemes that 
support computation on ciphertexts

Consists of three functions:
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Must satisfy usual notion of semantic security



Homomorphic Encryption

Homomorphic encryption: encryption schemes that support 
computation on ciphertexts

Consists of three functions:

Dec𝑠𝑘 Eva𝑙𝑓 𝑒𝑘, 𝑐1, 𝑐2 = 𝑓 𝑚1, 𝑚2

𝑐1 = Enc𝑝𝑘(𝑚1)

Eval𝑓
𝑐3

𝑐2 = Enc𝑝𝑘(𝑚2)

𝑒𝑘



Fully Homomorphic Encryption (FHE)

Many homomorphic encryption schemes:
• ElGamal: 𝑓 𝑚0, 𝑚1 = 𝑚0𝑚1

• Paillier: 𝑓 𝑚0, 𝑚1 = 𝑚0 +𝑚1

Fully homomorphic encryption: homomorphic with 
respect to two operations: addition and multiplication

• [BGN05]: one multiplication, many additions (SWHE)
• [Gen09]: first FHE construction from lattices



Task 1: Computing GWAS

AA AG AA AG GGCase:

AG AG GA GG GGControl:

Minor Allele Frequency: 
min 𝑛𝐴,𝑛𝐺

𝑛𝐴+𝑛𝐺

Genotypes for different 
individuals at a fixed location 

in the genome

allele counts

𝜒2-statistic: 𝜒2 = ∑
Obs−Exp 2

Exp

Observed (Obs) and expected (Exp) are 
functions of the different allele counts in 

the case and control groups



Limitations of FHE

In theory: SWHE/FHE can evaluate arbitrary functions

But many limitations in practice:
• Computation must be expressed as an arithmetic circuit: 

thus, division is hard
• Performance degrades rapidly in multiplicative depth of 

circuit



Striking a Balance

Minor Allele Frequency: 
min 𝑛𝐴,𝑛𝐺

𝑛𝐴+𝑛𝐺

𝜒2-statistic: 𝜒2 = ∑
Obs−Exp 2

Exp

Observation: allele 
counts are sufficient for 
computing MAF and 𝜒2

Solution: delegate aggregation to the cloud, client 
computes the statistical quantities of interest



Practical Outsourcing

Solution: delegate aggregation to the cloud, client 
computes the statistical quantities of interest

Solution enables use of symmetric primitives (e.g., AES)

Symmetric primitives + arithmetic faster than public key 
decryption



Symmetric Encryption

AA
encode 02 0 0

𝑛𝐴 𝑛𝐶 𝑛𝐺 𝑛𝑇 each genotype 
represented as a vector 

of counts

0 + 𝑟𝐶 0 + 𝑟𝐺 0 + 𝑟𝑇2 + 𝑟𝐴

blind

encrypt entries by adding independent, 
blinding factors from ℤ𝑛



Symmetric Encryption

AA 0 + 𝑟𝐶 0 + 𝑟𝐺 0 + 𝑟𝑇2 + 𝑟𝐴

AG 0 + 𝑟𝐶
′ 1 + 𝑟𝐺

′ 0 + 𝑟𝑇
′1 + 𝑟𝐴

′

Sum 0 + 𝑟𝑐 + 𝑟𝐶
′ 1 + 𝑟𝐺 + 𝑟𝐺

′ 0 + 𝑟𝑇 + 𝑟𝑇
′3 + 𝑟𝐴 + 𝑟𝐴

′

decryption: compute blinding factors 
and subtract



Symmetric Encryption

AA 0 + 𝑟𝐶 0 + 𝑟𝐺 0 + 𝑟𝑇2 + 𝑟𝐴

generate blinding factors using
PRF(𝑘, tag)

tag: SNP id ǁ group id ǁ subject id



Symmetric Encryption

Homomorphic operations consist of only additions

Encryption and decryption are symmetric primitives



Further Improvements

Client must do linear work to decrypt
• Alternative: if the data comes in batches, the client 

can precompute the counts per batch during 
encryption

• Decryption time proportional to number of batches



Performance

# SNPs Encryption Aggregation Decryption

100 0.17 0.02 0.15

1,000 1.68 0.17 1.42

10,000 17.47 1.59 15.06

100,000 179.53 17.72 145.52

Timing (in seconds) for computing MAF + 𝜒2 statistics (500 
subjects)

Only a few hundred lines to implement!



Task 2: Hamming Distance Computation

chr1:101088593: (C  T)

chr1:101265309: (C  T)

chr1:10165300:  (T  G)

and so on…

chr1:100011666: (T  C)

chr1:101265309: (C  T)

chr1:10165300:  (T  C)

and so on…

compute the Hamming distance between two 
sequences (represented as edits with respect to 

a reference genome)

location of 
edit

edit



Task 2: Hamming Distance Computation

chr1:101088593: (C  T)

chr1:101265309: (C  T)

chr1:10165300:  (T  G)

and so on…

chr1:100011666: (T  C)

chr1:101265309: (C  T)

chr1:10165300:  (T  C)

and so on…

ATGCTTAGTGGC…

ACGCTTGGTGGC…

naïve method: expand sequences, 
pairwise equality test



Task 2: Hamming Distance Computation

chr1:101088593: (C  T)

chr1:101265309: (C  T)

chr1:10165300:  (T  G)

and so on…

ATGCTTAGTGGC…

sequences too long: over 3 
billion base pairs in human 

genome

desire: protocol with performance 
proportional to number of edits



Task 2: Hamming Distance Computation

chr1:101088593: (C  T)

chr1:101265309: (C  T)

chr1:10165300:  (T  G)

and so on…

chr1:100011666: (T  C)

chr1:101265309: (C  T)

chr1:10165300:  (T  C)

and so on…

Genome A Genome B

view genomes as sets of edits from reference:

𝑑𝐻 𝐴, 𝐵 = 𝐴 + 𝐵 − 2 ⋅ 𝐴 ∩ 𝐵



Task 2: Hamming Distance Computation

Problem reduces to set intersection:

𝑑𝐻 𝐴, 𝐵 = 𝐴 + 𝐵 − 2 ⋅ 𝐴 ∩ 𝐵

Slight caveat:

chr1:10165300: (T  G)

chr1:10165300: (T  C)

same location, different 
edit: contribution to 
Hamming distance 

should be 1



Task 2: Hamming Distance Computation

Formulate as two set intersection problems:

𝑑𝐻 𝐴, 𝐵 = 𝐴 + 𝐵 − 𝐴 ∩ 𝐵 − 𝐴loc ∩ 𝐵loc

location, 
edit pairs

locations 
only



Homomorphic Set Intersection

chr1:101088593: (C  T)

chr1:101265309: (C  T)

chr1:10165300:  (T  G)

and so on…

chr1:100011666: (T  C)

chr1:101265309: (C  T)

chr1:10165300:  (T  C)

and so on…

Equality function: 𝑓 𝑥, 𝑦 = 𝟏 𝑥 = 𝑦

Simple solution: sum over pairwise equality tests



Homomorphic Set Intersection

Homomorphic evaluation of equality function:

If 𝑥, 𝑦 ∈ 0,1 ,

𝑓 𝑥, 𝑦 = 𝟏 𝑥 = 𝑦 = 1 − 𝑥 − 𝑦 2

Easy to generalize to 𝑛 bit integers, but requires degree 2𝑛
homomorphism



Homomorphic Set Intersection

Hashing to decrease number of pairwise comparisons

hash elements into buckets, pairwise equality test on 
hashed values within buckets

chr1:101088593: (C  T)

chr1:101265309: (C  T)

chr1:10165300:  (T  G)

and so on…

chr1:100011666: (T  C)

chr1:101265309: (C  T)

chr1:10165300:  (T  C)

and so on…

hashing

equality
test



Homomorphic Set Intersection: Tradeoffs

chr1:101088593: (C  T)

chr1:101265309: (C  T)

chr1:10165300:  (T  G)

and so on…

More buckets  lower collision 
rate, possibly more ciphertexts

More bits  lower collision rate, 
more homomorphism for equality 
test

Larger buckets  less likely that 
bucket overflows

Tunable parameters:
• number of buckets
• bits used to represent each 

element in a bucket
• bucket size



Performance

Size of Sets
Key 

Generation
Hashing Encryption Computation Encryption

1,000 23.80 0.007 31.97 104.16 1.78

5,000 23.36 0.025 95.38 475.37 1.78

10,000 27.14 0.093 176.50 936.64 1.91

Timing (in seconds) for homomorphic set intersection using 
HELib:

Primary drawback: key sizes + ciphertext sizes very large 
(several hundred MB to just over 1 GB) 



Conclusions

Task 1: Most efficient solution is to compute counts –
symmetric primitives suffice

Task 2: Hashing-based homomorphic set intersection 
can handle edit-sets with up to ten thousand elements, 
but with large parameter sizes


