
Homomorphic Encryption for
Genomic Analysis

Hoon Cho (MIT) and David Wu (Stanford)

March, 2015

Homomorphic Encryption

Homomorphic encryption (HE): encryption schemes that
support computation on ciphertexts

Consists of three functions:

Enc
m

c

pk

c

Dec
m

sk

Must satisfy usual notion of semantic security

Homomorphic Encryption

Homomorphic encryption: encryption schemes that support
computation on ciphertexts

Consists of three functions:

Dec𝑠𝑘 Eva𝑙𝑓 𝑒𝑘, 𝑐1, 𝑐2 = 𝑓 𝑚1, 𝑚2

𝑐1 = Enc𝑝𝑘(𝑚1)

Eval𝑓
𝑐3

𝑐2 = Enc𝑝𝑘(𝑚2)

𝑒𝑘

Fully Homomorphic Encryption (FHE)

Many homomorphic encryption schemes:
• ElGamal: 𝑓 𝑚0, 𝑚1 = 𝑚0𝑚1

• Paillier: 𝑓 𝑚0, 𝑚1 = 𝑚0 +𝑚1

Fully homomorphic encryption: homomorphic with
respect to two operations: addition and multiplication

• [BGN05]: one multiplication, many additions (SWHE)
• [Gen09]: first FHE construction from lattices

Task 1: Computing GWAS

AA AG AA AG GGCase:

AG AG GA GG GGControl:

Minor Allele Frequency:
min 𝑛𝐴,𝑛𝐺

𝑛𝐴+𝑛𝐺

Genotypes for different
individuals at a fixed location

in the genome

allele counts

𝜒2-statistic: 𝜒2 = ∑
Obs−Exp 2

Exp

Observed (Obs) and expected (Exp) are
functions of the different allele counts in

the case and control groups

Limitations of FHE

In theory: SWHE/FHE can evaluate arbitrary functions

But many limitations in practice:
• Computation must be expressed as an arithmetic circuit:

thus, division is hard
• Performance degrades rapidly in multiplicative depth of

circuit

Striking a Balance

Minor Allele Frequency:
min 𝑛𝐴,𝑛𝐺

𝑛𝐴+𝑛𝐺

𝜒2-statistic: 𝜒2 = ∑
Obs−Exp 2

Exp

Observation: allele
counts are sufficient for
computing MAF and 𝜒2

Solution: delegate aggregation to the cloud, client
computes the statistical quantities of interest

Practical Outsourcing

Solution: delegate aggregation to the cloud, client
computes the statistical quantities of interest

Solution enables use of symmetric primitives (e.g., AES)

Symmetric primitives + arithmetic faster than public key
decryption

Symmetric Encryption

AA
encode 02 0 0

𝑛𝐴 𝑛𝐶 𝑛𝐺 𝑛𝑇 each genotype
represented as a vector

of counts

0 + 𝑟𝐶 0 + 𝑟𝐺 0 + 𝑟𝑇2 + 𝑟𝐴

blind

encrypt entries by adding independent,
blinding factors from ℤ𝑛

Symmetric Encryption

AA 0 + 𝑟𝐶 0 + 𝑟𝐺 0 + 𝑟𝑇2 + 𝑟𝐴

AG 0 + 𝑟𝐶
′ 1 + 𝑟𝐺

′ 0 + 𝑟𝑇
′1 + 𝑟𝐴

′

Sum 0 + 𝑟𝑐 + 𝑟𝐶
′ 1 + 𝑟𝐺 + 𝑟𝐺

′ 0 + 𝑟𝑇 + 𝑟𝑇
′3 + 𝑟𝐴 + 𝑟𝐴

′

decryption: compute blinding factors
and subtract

Symmetric Encryption

AA 0 + 𝑟𝐶 0 + 𝑟𝐺 0 + 𝑟𝑇2 + 𝑟𝐴

generate blinding factors using
PRF(𝑘, tag)

tag: SNP id ǁ group id ǁ subject id

Symmetric Encryption

Homomorphic operations consist of only additions

Encryption and decryption are symmetric primitives

Further Improvements

Client must do linear work to decrypt
• Alternative: if the data comes in batches, the client

can precompute the counts per batch during
encryption

• Decryption time proportional to number of batches

Performance

SNPs Encryption Aggregation Decryption

100 0.17 0.02 0.15

1,000 1.68 0.17 1.42

10,000 17.47 1.59 15.06

100,000 179.53 17.72 145.52

Timing (in seconds) for computing MAF + 𝜒2 statistics (500
subjects)

Only a few hundred lines to implement!

Task 2: Hamming Distance Computation

chr1:101088593: (C  T)

chr1:101265309: (C  T)

chr1:10165300: (T  G)

and so on…

chr1:100011666: (T  C)

chr1:101265309: (C  T)

chr1:10165300: (T  C)

and so on…

compute the Hamming distance between two
sequences (represented as edits with respect to

a reference genome)

location of
edit

edit

Task 2: Hamming Distance Computation

chr1:101088593: (C  T)

chr1:101265309: (C  T)

chr1:10165300: (T  G)

and so on…

chr1:100011666: (T  C)

chr1:101265309: (C  T)

chr1:10165300: (T  C)

and so on…

ATGCTTAGTGGC…

ACGCTTGGTGGC…

naïve method: expand sequences,
pairwise equality test

Task 2: Hamming Distance Computation

chr1:101088593: (C  T)

chr1:101265309: (C  T)

chr1:10165300: (T  G)

and so on…

ATGCTTAGTGGC…

sequences too long: over 3
billion base pairs in human

genome

desire: protocol with performance
proportional to number of edits

Task 2: Hamming Distance Computation

chr1:101088593: (C  T)

chr1:101265309: (C  T)

chr1:10165300: (T  G)

and so on…

chr1:100011666: (T  C)

chr1:101265309: (C  T)

chr1:10165300: (T  C)

and so on…

Genome A Genome B

view genomes as sets of edits from reference:

𝑑𝐻 𝐴, 𝐵 = 𝐴 + 𝐵 − 2 ⋅ 𝐴 ∩ 𝐵

Task 2: Hamming Distance Computation

Problem reduces to set intersection:

𝑑𝐻 𝐴, 𝐵 = 𝐴 + 𝐵 − 2 ⋅ 𝐴 ∩ 𝐵

Slight caveat:

chr1:10165300: (T  G)

chr1:10165300: (T  C)

same location, different
edit: contribution to
Hamming distance

should be 1

Task 2: Hamming Distance Computation

Formulate as two set intersection problems:

𝑑𝐻 𝐴, 𝐵 = 𝐴 + 𝐵 − 𝐴 ∩ 𝐵 − 𝐴loc ∩ 𝐵loc

location,
edit pairs

locations
only

Homomorphic Set Intersection

chr1:101088593: (C  T)

chr1:101265309: (C  T)

chr1:10165300: (T  G)

and so on…

chr1:100011666: (T  C)

chr1:101265309: (C  T)

chr1:10165300: (T  C)

and so on…

Equality function: 𝑓 𝑥, 𝑦 = 𝟏 𝑥 = 𝑦

Simple solution: sum over pairwise equality tests

Homomorphic Set Intersection

Homomorphic evaluation of equality function:

If 𝑥, 𝑦 ∈ 0,1 ,

𝑓 𝑥, 𝑦 = 𝟏 𝑥 = 𝑦 = 1 − 𝑥 − 𝑦 2

Easy to generalize to 𝑛 bit integers, but requires degree 2𝑛
homomorphism

Homomorphic Set Intersection

Hashing to decrease number of pairwise comparisons

hash elements into buckets, pairwise equality test on
hashed values within buckets

chr1:101088593: (C  T)

chr1:101265309: (C  T)

chr1:10165300: (T  G)

and so on…

chr1:100011666: (T  C)

chr1:101265309: (C  T)

chr1:10165300: (T  C)

and so on…

hashing

equality
test

Homomorphic Set Intersection: Tradeoffs

chr1:101088593: (C  T)

chr1:101265309: (C  T)

chr1:10165300: (T  G)

and so on…

More buckets  lower collision
rate, possibly more ciphertexts

More bits  lower collision rate,
more homomorphism for equality
test

Larger buckets  less likely that
bucket overflows

Tunable parameters:
• number of buckets
• bits used to represent each

element in a bucket
• bucket size

Performance

Size of Sets
Key

Generation
Hashing Encryption Computation Encryption

1,000 23.80 0.007 31.97 104.16 1.78

5,000 23.36 0.025 95.38 475.37 1.78

10,000 27.14 0.093 176.50 936.64 1.91

Timing (in seconds) for homomorphic set intersection using
HELib:

Primary drawback: key sizes + ciphertext sizes very large
(several hundred MB to just over 1 GB)

Conclusions

Task 1: Most efficient solution is to compute counts –
symmetric primitives suffice

Task 2: Hashing-based homomorphic set intersection
can handle edit-sets with up to ten thousand elements,
but with large parameter sizes

