Homomorphic Encryption for
Genomic Analysis

Hoon Cho (MIT) and David Wu (Stanford)
March, 2015

Homomorphic Encryption

Homomorphic encryption (HE): encryption schemes that
support computation on ciphertexts

Consists of three functions:

m C
C m
::[Enc J—» ::[Dec }—»
sk

pk

Must satisfy usual notion of semantic security

Homomorphic Encryption

Homomorphic encryption: encryption schemes that support
computation on ciphertexts

Consists of three functions:

¢; = Ency(my)

C3

Evalf J—P
¢, = Ency(im;)
ekT

DeCSk (Evalf(ekJ C1, CZ)) — f(ml) mZ)

Fully Homomorphic Encryption (FHE)

Many homomorphic encryption schemes:
* ElGamal: f(my, m;) = mymy
* Paillier: f(my, my) = my + my

Fully homomorphic encryption: homomorphic with
respect to two operations: addition and multiplication
e [BGNO5]: one multiplication, many additions (SWHE)
e [Gen09]: first FHE construction from lattices

Task 1: Computing GWAS

Case: AN AG AA AG GG Genotypes for different
' individuals at a fixed location
COntrO|: AG AG GA GG GG in the genome

allele counts

4

min(ng,ng)

Minor Allele Frequency:

nap+ng
3 2 Observed (Obs) and expected (Exp) are
)(Z-statistic:)(2 = Z (ObSE Exp) functions of the different allele counts in
Xp

the case and control groups

Limitations of FHE

In theory: SWHE/FHE can evaluate arbitrary functions

But many limitations in practice:

* Computation must be expressed as an arithmetic circuit:
thus, division is hard

* Performance degrades rapidly in multiplicative depth of
circuit

Striking a Balance

min(ng,ng) Observation: allele

Minor Allele Frequency:

nATNG counts are sufficient for
o computing MAF and y?
x“-statistic: y2 =) (ObSEXiXp)

Solution: delegate aggregation to the cloud, client
computes the statistical quantities of interest

Practical Outsourcing

Solution: delegate aggregation to the cloud, client
computes the statistical quantities of interest

Solution enables use of symmetric primitives (e.g., AES)

Symmetric primitives + arithmetic faster than public key
decryption

Symmetric Encryption

Mg N¢ g Nr each genotype
encode ‘2‘0‘0‘0‘
Ap ———— represented as a vector

of counts
blind

‘2+TA ‘O+TC ‘O‘l‘TG ‘O+TT

encrypt entries by adding independent,
blinding factors from Z,,

Symmetric Encryption

AA ———) ‘Z-I-TA ‘O+rc ‘0+r6 ‘O+rT ‘

AG =——————> ‘1+7;{ ‘O+rc' ‘1+r(’; ‘O+r} ‘

Sum —— ‘3+rA+1;{ ‘O+rc+ré ‘1+r6+r6’ ‘O+rT+r}

decryption: compute blinding factors
and subtract

Symmetric Encryption

generate blinding factors using
PRF(k, tag)

tag: SNP id || group id || subject id

AR — |2+ ‘o+rc 10+ ‘o+rT |

Symmetric Encryption

Homomorphic operations consist of only additions

Encryption and decryption are symmetric primitives

Further Improvements

Client must do linear work to decrypt

 Alternative: if the data comes in batches, the client
can precompute the counts per batch during
encryption

* Decryption time proportional to number of batches

Performance

Timing (in seconds) for computing MAF + y? statistics (500
subjects)

0.17 0.02 0.15

1,000 1.68 0.17 1.42
10,000 17.47 1.59 15.06
100,000 179.53 17.72 145.52

Only a few hundred lines to implement!

Task 2: Hamming Distance Computation

location of edit
edit \ /
chr1:101088593: (C =2 T) chr1:100011666: (T =2 C)
chr1:101265309: (C = T) chr1:101265309: (C =2 T)
chrl1:10165300: (T =2 G) chrl1:10165300: (T = C)
and so on... and so on...

compute the Homming distance between two
sequences (represented as edits with respect to
a reference genome)

Task 2: Hamming Distance Computation

chr1:101088593: (C =2 T)
chrl1:101265309: (C =2 T)
chr1:10165300: (T =2 G)
and so on..
chr1:100011666: (T =2 C)
chrl1:101265309: (C =2 T)
chr1:10165300: (T =2 C)

and so on..

—_— ATGCTTAGTGGC...

—p> ACGCTTGGTGGC...

naive method: expand sequences,
pairwise equality test

Task 2: Hamming Distance Computation

chr1:101088593: (C =2 T)
chrl1:101265309: (C =2 T)
chr1:10165300: (T > G) —> ATGCTTAGTGGC...

and so on..

sequences too long: over 3
billion base pairs in human
genome

desire: protocol with performance
proportional to number of edits

Task 2: Hamming Distance Computation

chr1:101088593: (C = T) chr1:100011666: (T =2 C)
chr1:101265309: (C =2 T) chr1:101265309: (C =2 T)
chrl1:10165300: (T =2 G) chrl1:10165300: (T = C)
and SO oOn... and soO on...
Genome A Genome B

view genomes as sets of edits from reference:

dy(A,B) = |A| +[B| =2 -]|AN B]

Task 2: Hamming Distance Computation

Problem reduces to set intersection:

dy(A,B) = |Al +[B| =2 -|AN B]

Slight caveat:

chrl1:10165300:

(T =2 G)

chrl1:10165300:

(T =2 C)

same location, different
edit: contribution to
Hamming distance
should be 1

Task 2: Hamming Distance Computation

Formulate as two set intersection problems:

dy(A,B) = |Al + |B] — |An B| — |Al°¢ n Bloc]

/ \

location, locations
edit pairs only

Homomorphic Set Intersection

chr1:101088593: (C = T) chr1:100011666: (T =2 C)

chr1:101265309: (C =2 T) chr1:101265309: (C =2 T)

chrl1:10165300: (T =2 G) chrl1:10165300: (T = C)
and so on... and so on...

Equality function: f(x,y) = 1{x = y}

Simple solution: sum over pairwise equality tests

Homomorphic Set Intersection

Homomorphic evaluation of equality function:
If x,y € {0,1},

f,y)=1{x=y}=1—-(x—y)?

Easy to generalize to n bit integers, but requires degree 2n
homomorphism

Homomorphic Set Intersection

Hashing to decrease number of pairwise comparisons

hashing -—
chr1:101088593: (C > T) chr1:100011666: (T > C)
chr1:101265309: (C > T) < _’. chr1:101265309: (C > T)
chr1:10165300: (T > G) equallty chr1:10165300: (T > C)
and so on.. & and so on..

hash elements into buckets, pairwise equality test on
hashed values within buckets

Homomorphic Set Intersection: Tradeoffs

chr1:101088593: (C =»> T
chrl1:101265309: (C = T)
chrl1:10165300: (T = G

)

)

and so on

Tunable parameters:

number of buckets

bits used to represent each
element in a bucket
bucket size

More buckets = lower collision
rate, possibly more ciphertexts

More bits = lower collision rate,
more homomorphism for equality
test

Larger buckets = less likely that
bucket overflows

Performance

Timing (in seconds) for homomorphic set intersection using
HELib:

Key . . .

1,000 23.80 0.007 31.97 104.16 1.78
5,000 23.36 0.025 95.38 475.37 1.78
10,000 27.14 0.093 176.50 936.64 1.91

Primary drawback: key sizes + ciphertext sizes very large
(several hundred MB to just over 1 GB)

Conclusions

Task 1: Most efficient solution is to compute counts —
symmetric primitives suffice

Task 2: Hashing-based homomorphic set intersection
can handle edit-sets with up to ten thousand elements,
but with large parameter sizes

