Homomorphic Encryption for Genomic Analysis

Hoon Cho (MIT) and David Wu (Stanford) March, 2015

Homomorphic Encryption

Homomorphic encryption (HE): encryption schemes that support computation on ciphertexts

Consists of three functions:

Must satisfy usual notion of semantic security

Homomorphic Encryption

Homomorphic encryption: encryption schemes that support computation on ciphertexts

Consists of three functions:

$$c_{1} = \operatorname{Enc}_{pk}(m_{1})$$

$$c_{2} = \operatorname{Enc}_{pk}(m_{2})$$

$$ek$$

$$\operatorname{Dec}_{sk}\left(\operatorname{Eval}_{f}(ek, c_{1}, c_{2})\right) = f(m_{1}, m_{2})$$

Fully Homomorphic Encryption (FHE)

Many homomorphic encryption schemes:

- ElGamal: $f(m_0, m_1) = m_0 m_1$
- Paillier: $f(m_0, m_1) = m_0 + m_1$

Fully homomorphic encryption: homomorphic with respect to **two** operations: addition and multiplication

- [BGN05]: one multiplication, many additions (SWHE)
- [Gen09]: first FHE construction from lattices

Task 1: Computing GWAS

Genotypes for different individuals at a fixed location in the genome

$$\chi^2$$
-statistic: $\chi^2 = \sum \frac{(\text{Obs}-\text{Exp})^2}{\text{Exp}}$

Observed (Obs) and expected (Exp) are functions of the different allele counts in the case and control groups

Limitations of FHE

In theory: SWHE/FHE can evaluate *arbitrary* functions

But many limitations in practice:

- Computation must be expressed as an arithmetic circuit: thus, division is hard
- Performance degrades rapidly in multiplicative depth of circuit

Striking a Balance

Minor Allele Frequency:
$$\frac{\min(n_A, n_G)}{n_A + n_G}$$

$$\chi^2$$
-statistic: $\chi^2 = \sum \frac{(\text{Obs}-\text{Exp})^2}{\text{Exp}}$

Observation: allele counts are sufficient for computing MAF and χ^2

Solution: delegate *aggregation* to the cloud, client computes the statistical quantities of interest

Practical Outsourcing

Solution: delegate *aggregation* to the cloud, client computes the statistical quantities of interest

Solution enables use of symmetric primitives (e.g., AES)

Symmetric primitives + arithmetic faster than public key decryption

encrypt entries by adding independent, blinding factors from \mathbb{Z}_n

decryption: compute blinding factors and subtract

$$AA \longrightarrow 2 + r_A \quad 0 + r_C \quad 0 + r_G \quad 0 + r_T$$

Homomorphic operations consist of only additions

Encryption and decryption are **symmetric** primitives

Further Improvements

Client must do linear work to decrypt

- Alternative: if the data comes in batches, the client can precompute the counts per batch during encryption
- Decryption time proportional to *number of batches*

Performance

Timing (in seconds) for computing MAF + χ^2 statistics (500 subjects)

# SNPs	Encryption	Aggregation	Decryption
100	0.17	0.02	0.15
1,000	1.68	0.17	1.42
10,000	17.47	1.59	15.06
100,000	179.53	17.72	145.52

Only a few hundred lines to implement!

compute the Hamming distance between two sequences (represented as edits with respect to a reference genome)

pairwise equality test

sequences too long: over 3 billion base pairs in human genome

desire: protocol with performance proportional to *number of edits*

Genome A

Genome B

view genomes as sets of edits from reference:

 $d_{H}(A,B) = |A| + |B| - 2 \cdot |A \cap B|$

Problem reduces to set intersection:

$$d_H(A,B) = |A| + |B| - 2 \cdot |A \cap B|$$

Slight caveat:

chr1:10165300: (T → G)

chr1:10165300: (T → C)

same location, different edit: contribution to Hamming distance should be 1

Formulate as two set intersection problems:

$$d_{H}(A,B) = |A| + |B| - |A \cap B| - |A^{loc} \cap B^{loc}|$$

$$\int \\ location, \\ edit pairs \\ only$$

Homomorphic Set Intersection

Equality function: $f(x, y) = \mathbf{1}\{x = y\}$

Simple solution: sum over pairwise equality tests

Homomorphic Set Intersection

Homomorphic evaluation of equality function:

If $x, y \in \{0, 1\}$,

$$f(x, y) = \mathbf{1}\{x = y\} = 1 - (x - y)^2$$

Easy to generalize to n bit integers, but requires degree 2n homomorphism

Homomorphic Set Intersection

Hashing to decrease number of pairwise comparisons

hash elements into buckets, pairwise equality test on hashed values within buckets

Homomorphic Set Intersection: Tradeoffs

Tunable parameters:

- number of buckets
- bits used to represent each element in a bucket
- bucket size

More buckets \rightarrow lower collision rate, possibly more ciphertexts

More bits \rightarrow lower collision rate, more homomorphism for equality test

Larger buckets \rightarrow less likely that bucket overflows

Performance

Timing (in seconds) for homomorphic set intersection using HELib:

Size of Sets	Key Generation	Hashing	Encryption	Computation	Encryption
1,000	23.80	0.007	31.97	104.16	1.78
5,000	23.36	0.025	95.38	475.37	1.78
10,000	27.14	0.093	176.50	936.64	1.91

Primary drawback: key sizes + ciphertext sizes very large (several hundred MB to just over 1 GB)

Task 1: Most efficient solution is to compute counts – symmetric primitives suffice

Task 2: Hashing-based homomorphic set intersection can handle edit-sets with up to ten thousand elements, but with large parameter sizes