iDASH - Secure Genome Analysis Competition Using OblivM

Xiao Shaun Wang, Chang Liu, Kartik Nayak, Yan Huang and Elaine Shi

University of Maryland, College Park Indiana University, Bloomington

ObliVM

Programming Framework for Secure Computation

ObliVM

Programming Framework for Secure Computation

Ease-of-use: easy for non-specialist programmers to use

ObliVM

Programming Framework for Secure Computation

Ease-of-use: easy for non-specialist programmers to use
Efficiency: compiles programs to small circuits

Real-life: Programs

ObliVM

Programming Framework for Secure Computation

Ease-of-use: easy for non-specialist programmers to use
Efficiency: compiles programs to small circuits
Formal Security: type system is being formalized

> http://oblivm.com

Compute MAF

- Compute minor allele frequencies

> Alice
> AA AC AA
> $f_{A}^{\text {Alice }}=5, f_{C}^{\text {Alice }}=1$

AA AC CC

$$
f_{A}^{B o b}=3, f_{C}^{B o b}=3
$$

Cleartext
 Secure

Compute MAF

- Compute minor allele frequencies

Alice
AA AC AA
Bob
AA AC CC

$$
f_{A}^{\text {Alice }}=5, f_{C}^{\text {Alice }}=1
$$

$$
f_{A}^{B o b}=3, f_{C}^{B o b}=3
$$

Compute $\min \left(f_{A}^{\text {Alice }}+f_{A}^{\text {Bob }}, f_{C}^{A l i c e}+f_{C}^{\text {Bob }}\right)$

Cleartext
Secure

Compute MAF

- Compute minor allele frequencies

Alice
AA AC AA
Bob
AA AC CC

$$
f_{A}^{\text {Alice }}=5, f_{C}^{\text {Alice }}=1
$$

$$
f_{A}^{B o b}=3, f_{C}^{B o b}=3
$$

Compute $\min \left(f_{A}^{\text {Alice }}+f_{A}^{\text {Bob }}, f_{C}^{A l i c e}+f_{C}^{\text {Bob }}\right)$
Secure Computation: $M A F=\min \left(f_{A}^{A l i c e}+f_{A}^{B o b}, f_{C}^{A l i c e}+f_{C}^{B o b}\right)$

Cleartext
Secure

Code in OblivM-lang: Compute MAF

```
struct Task1aAutomated@m@n{};
void Task1aAutomated@m@n.funct(int@m[public n] alice_data,
                                    int@m[public n] bob_data,
                                    int@m[public n] ret,
                                    public int@m total_instances) {
    int@m total = total_instances;
    int@m half = total_instances / 2;
    for (public int32 i = 0; i < n; i = i + 1) {
        ret[i] = alice_data[i] + bob_data[i];
        if (ret[i] > half)
        ret[i] = total - ret[i];
}
```

10
11

Problem Statement: Compute χ^{2} STATISTIC

- Task 1b: Computing χ^{2} statistic

Alice
Bob
Case: AA AC AA
Control: AA CA CA
Case: AA AC CC
Control: CA AC CC

Cleartext
Secure

Problem Statement: Compute χ^{2} STATISTIC

- Task 1b: Computing χ^{2} statistic

Alice
Case: AA AC AA
Control: AA CA CA
\title{ Bob

Case: AA AC CC Control: CA AC CC }

a, b : allele counts for case group
c, d : allele counts for control group
(similar to Task 1A)

Cleartext
Secure

Problem Statement: Compute χ^{2} STATISTIC

- Task 1b: Computing χ^{2} statistic
a, b : allele counts for case group
c, d : allele counts for control group
(similar to Task 1A)

Cleartext

$$
\begin{gathered}
\chi^{2}=n \times \frac{(a d-b c)^{2}}{r s g k} \\
\text { where } r=a+b, s=c+d, g=a+c, \\
k=b+d, n=r+s
\end{gathered}
$$

Secure

Results: Compute χ^{2} statistic

- Floating point computation
- Absolute accuracy
1.11×10^{-4} with 7763 gates 5.6×10^{-8} with 14443 gates

Code in ObliVM-lang: Compute χ^{2} STATISTIC

ObliVM

TAsk 1 A
TAsk 1B
Set union
TAsk 2A
TASK 2B

```
struct Task1bAutomated@n{};
float32[public n] Task1bAutomated@n.func(
        float32[public n] [public 2] alice_case, float32[public n] [public 2] alice_control,
        float32[public n] [public 2] bob_case, float32[public n][public 2] bob_control) {
        float32[public n] ret;
        for (public int32 i = 0; i < n; i= i + 1) {
        float32 a = alice_case[i][0] + bob_case[i][0];
        float32 b = alice_case[i][1] + bob_case[i][1];
        float32 c = alice_control[i][0] + bob_control[i][0];
        float32 d = alice_control[i][1] + bob_control[i][1];
        float32 g = a + c, k = b + d;
        float32 tmp = a*d - b*c;
        tmp = tmp*tmp;
        ret[i] = tmp / (g*k);
        }
        return ret;
}
```


Building Block: Secure Set Union

$$
\begin{array}{cc}
\text { Alice } & \text { Bob } \\
S^{A} & S^{B} \\
\{a, b, c\} & \{b, d, e\}
\end{array}
$$

Building Block: Secure Set Union

$$
\begin{array}{cc}
\text { Alice } & \text { Bob } \\
S^{A} & S^{B} \\
\{\mathrm{a}, \mathrm{~b}, \mathrm{c}\} & \{\mathrm{b}, \mathrm{~d}, \mathrm{e}\}
\end{array}
$$

Cardinality of the union of the sets i.e. $\left|S^{A} \cup S^{B}\right|$

$$
\left|S^{A} \cup S^{B}\right|=5
$$

Building Block: Secure Set Union

Cardinality of the union of the sets i.e. $\left|S^{A} \cup S^{B}\right|$

$$
\left|S^{A} \cup S^{B}\right|=5
$$

Strawman solution:
union $\left(S^{A}, S^{B}\right)$
1: Sort the combined array $S^{A} \| S^{B}$ obliviously

$$
O\left(N \log ^{2} N\right)
$$

Building Block: Secure Set Union

Cardinality of the union of the sets i.e. $\left|S^{A} \cup S^{B}\right|$

$$
\left|S^{A} \cup S^{B}\right|=5
$$

Strawman solution:
union $\left(S^{A}, S^{B}\right)$
1: Sort the combined array $S^{A} \| S^{B}$ obliviously
2: Compute cardinality in a single pass

$$
O\left(N \log ^{2} N\right)
$$

Set Union: Oblivious Merge

union $\left(S^{A}, S^{B}\right)$
1: Local sort of S^{A} and S^{B}

Cleartext
Secure

Set Union: Oblivious Merge

ObliVM

union $\left(S^{A}, S^{B}\right)$
1: Local sort of S^{A} and S^{B}
2: Oblivious merge of sorted lists

Cleartext Secure

Set Union: Oblivious Merge

union $\left(S^{A}, S^{B}\right)$

1: Local sort of S^{A} and S^{B}
2: Oblivious merge of sorted lists
3: Compute cardinality in a single pass
$O(N \log N)$

Cleartext
Secure

Code: Oblivious Merge

11 void Task2Automated@m@n.obliviousMerge(int@m[public n] key,

13

Set Union: Bloom Filter

- Common case: Check for existence of elements
- Our case: Approximate the cardinality of a set S

Set Union: Bloom Filter

- Common case: Check for existence of elements
- Our case: Approximate the cardinality of a set S

$$
|S|_{M L E}=\frac{\ln \left(1-\frac{X}{m}\right)}{k \ln (1-1 / m)}
$$

where
X : number of bits set,
m : number of bits in the bloom filter,
k : number of hash functions,
$|S|_{\text {MLE }}$: maximum likelihood estimate of $|S|$

Set Union: Bloom Filter

union $\left(S^{A}, S^{B}\right)$
1: Compute bloom filters locally

Cleartext Secure

Set Union: Bloom Filter

union $\left(S^{A}, S^{B}\right)$
1: Compute bloom filters locally
2: In secure computation, compute bitwise OR and count number of 1's

Cleartext Secure

Set Union: Bloom Filter

union $\left(S^{A}, S^{B}\right)$
1: Compute bloom filters locally
2: In secure computation, compute bitwise OR and count num-
ber of 1's
3: Compute estimated $\|S\|$ in cleartext

Cleartext Secure

Set Union: Bloom Filter

```
union(S
    1: Compute bloom filters locally
    2: In secure computation, compute bitwise OR and count num-
        ber of 1's
    3: Compute estimated |S| in cleartext
```

$O(m)$ operations, m : number of bits used for bloom filter $m=O(N)$, number of elements inserted in the bloom filter

Cleartext
Secure

Code: CountOnes

```
int@log(n+1) BF_circuit.countOnes@n(int@n x) {
    if ( }n==1\mathrm{ ) return x;
    int@log(n - n/2 +1) first = this.countOnes@(n/2)(x$0~n/2$);
    int@log(n-n/2+1) second = this.countOnes@(n-n/2)(x$n/2~n$);
    Pair<bit, Int@log(n-n/2)> ret = this.add@log(n - n/2 + 1)(first, second);
    int@log(n+1)r = ret.right.v;
    r$log(n+1)-1$ = ret.left.v;
    return r;
}
```


Problem Statement: Hamming Distance

Alice and Bob maintain records of type (ref, svtype, alt) that differ from the reference
d = 0;
for each record of type SNP or SUB
if ($(x==n u l l)$ || ($y==n u l l)$ || (x.ref $==$
y.ref \&\& x.alt != y.alt)
d += 1;
end for

Solution: Hamming Distance

$$
\begin{array}{cc}
\text { Alice } & \text { Bob } \\
S^{A}=\{(1, \mathrm{~T}, \mathrm{SNP}),(75, \mathrm{G}, \mathrm{SNP})\} & S^{B}=\{(1, \mathrm{~T}, \mathrm{SNP}),(18, \mathrm{~A}, \mathrm{SNP})\}
\end{array}
$$

We need all positions that have been modified, but not modified to the same value
Hamming Distance $=\left|S^{A} \cup S^{B}\right|-\left|S^{A} \cap S^{B}\right|=$ $|\{(75, G, S N P),(18, A, S N P)\}|$

Problem Statement: Edit Distance

Alice and Bob maintain records of type (ref, svtype, alt) that differ from the reference

Replacement: Calculate like hamming distance Insertion/Deletion:

If one party modifies a position, add len(alt) to edit distance

If both parties modify a position, add len(max (alt1, alt2)) to edit distance

Solution: Edit Distance

Alice \{(1, T, SNP), (10, TCG, INS), ($75, \mathrm{G}, \mathrm{SNP}$) $\}$

Bob
\{(1, T, SNP),
(10, CA, INS),
(18, A, SNP) \}

Solution: Edit Distance

OblivM

$$
\begin{aligned}
& S_{1}^{A}=\{(1,1),(10,1),(10,2),(10,3),(75,1)\} \\
& S_{2}^{A}=\{(1, T, 1),(10, T, 1),(10, C, 2),(10, G, 3),(75, G, 1)\}
\end{aligned}
$$

Solution: Edit Distance

$$
\begin{aligned}
& \text { Alice } \\
& \text { \{(1, T, SNP), } \\
& \text { (10, TCG, INS), } \\
& \text { (75, G, SNP) \} } \\
& \text { Bob } \\
& \text { \{(1, T, SNP), } \\
& \text { (10, CA, INS), } \\
& \text { (18, A, SNP) \} } \\
& S_{1}^{A}=\{(1,1),(10,1),(10,2),(10,3),(75,1)\} \\
& S_{2}^{A}=\{(1, T, 1),(10, T, 1),(10, C, 2),(10, G, 3),(75, G, 1)\} \\
& d 1=\left|S_{1}^{A} \cup S_{1}^{B}\right|=|\{(1,1),(10,1),(10,2),(10,3),(75,1),(18,1)\}|
\end{aligned}
$$

Solution: Edit Distance

$$
\begin{aligned}
& \text { Alice } \\
& \text { \{(1, T, SNP), } \\
& \text { (10, TCG, INS), } \\
& \text { (75, G, SNP) \} } \\
& \text { Bob } \\
& \text { \{(1, T, SNP), } \\
& \text { (10, CA, INS), } \\
& \text { (18, A, SNP) \} } \\
& S_{1}^{A}=\{(1,1),(10,1),(10,2),(10,3),(75,1)\} \\
& S_{2}^{A}=\{(1, T, 1),(10, T, 1),(10, C, 2),(10, G, 3),(75, G, 1)\} \\
& d 1=\left|S_{1}^{A} \cup S_{1}^{B}\right|=|\{(1,1),(10,1),(10,2),(10,3),(75,1),(18,1)\}| \\
& d 2=\left|S_{2}^{A} \cap S_{2}^{B}\right|=|\{(1, T, 1)\}|
\end{aligned}
$$

Compute $d 1-d 2$

Thank You!

http://oblivm.com/

kartik@cs.umd.edu

