iDASH Healthcare Privacy Protection Challenge

Fei Yu feiy@stat.cmu.edu

Carnegie Mellon University

24 March 2014

0			
0	Vel	CVI.	ew/
~			~

Method

Scoring functions

Summary

Overview

Task

Select the K most significant SNPs differentially-privately.

- * <u>Setting</u>: case-control study.
- * <u>Input data</u>: genotype data (e.g., AA, AT, TT) for cases, minor allele frequencies for controls.
- * Ranking significance: p-value corresponding to Pearson's χ^2 test of association between SNP and phenotype.
- * <u>Performance evaluation</u>: the proportion of significant SNPs recovered.

Method

Scoring functions

Summary

Overview

- * Method is based on the exponential mechanism.
- * Two variations of the method. Pros and cons.

-							
()							
~	~	~	Y	8	~	~~	

Method

Scoring functions

Summary

Definitions

Differential privacy

Let \mathcal{D} denote the set of all data sets. Write $D \sim D'$ if D and D'differ in one individual. A randomized mechanism \mathcal{K} is ϵ -differentially private if, for all $D \sim D'$ and for any measurable set $S \subset \mathbb{R}$,

$$\frac{Pr(\mathcal{K}(D) \in S)}{Pr(\mathcal{K}(D') \in S)} \le e^{\epsilon}.$$

Sensitivity

The sensitivity of a function $f: \mathcal{D}^N \to \mathbb{R}^d$, where \mathcal{D}^N denotes the set of all databases with N individuals, is the smallest number S(f) such that

$$||f(D) - f(D')||_1 \le S(f),$$

for all data sets $D, D' \in \mathcal{D}^N$ such that $D \sim D'$.

Method

Scoring functions

Summary

Exponential mechanism

McSherry and Talwar (2007): Given $D = {SNP_i}_{i=1}^M$, ε_q^{ϵ} is a r.v. with

$$\Pr(\varepsilon_q^{\epsilon}(D) = i) \propto \exp\left(\frac{\epsilon q(D, i)}{2\Delta_q}\right) \mu(i)$$
$$\propto \exp\left(\frac{\epsilon q(D, i)}{2s}\right)$$

where

$$\begin{split} q(D,i) &= \text{ the score for SNP}_i \\ s &= \text{ the sensitivity of } q(D,\cdot) \\ \mu(i) &= 1/M. \end{split}$$

ε_q^{ϵ} is ϵ -differentially private.

<ロト < 目 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Method

Scoring functions

Summary

Exponential mechanism

We can use any scoring function $q(D,\cdot)$ with the exponential mechanism. Examples:

- 1. χ^2 statistic
- 2. Hamming distance (Johnson and Shmatikov 2013)

,

うつん 正正 エル・エリ・エリッ ひゃく

Extending the exponential mechanism

Johnson and Shmatikov (2013): selecting the K most significant SNPs (LocSig).

1. Initialize $S = \emptyset$ and $q_i = \text{score of SNP}_i$.

2. Set
$$w_i = \exp\left(\frac{\epsilon q_i}{2Ks}\right)$$
 and $\Pr(\varepsilon_q^{\epsilon}(D) = i) = w_i / \sum_{j=1}^M w_j$.

3. Sample $j \sim \varepsilon_q^{\epsilon}(D)$. Add SNP_j to S. Set $q_j = -\infty$.

4. If |S| < K, return to Step 2. Otherwise, output S.

LocSig is ϵ -differentially private (Yu et al. 2014).

Performance of different scoring functions

- * Hamming (distance) outperforms χ^2 when ϵ is small.
- * Utility of Hamming may plateur before it reaches 1.0. (Why?)

Method

Scoring functions

Summary

< ロト < 目 > < 目 > < 目 > のQの

Setup

Assumptions:

- * # of cases = # of controls = N/2.
- * Case data are private but control data are known.

-								
()			r					
~	~	~	۰.	Y.	8	~	~~	

Method

Scoring functions

Summary

Setup

Summarizing a SNP:

* Genotype table is not available. We only know the genotypes of the cases:

Genotype	0	1	2	
Case	g_0	g_1	g_2	N/2

* Derived allelic table:

Allele	0	1	
Case	n_{00}	n_{01}	N
Control	n_{10}	n_{11}	N
	n_0	n_1	2N

Using χ^2 statistic as score

- * Pearson's χ^2 statistics are used to rank significance of SNPs.
- * Higher utility is attainable by increasing ϵ .
- * Sensitivity of the Pearson's χ^2 statistic of an allelic table with positive margins, N/2 cases and N/2 controls is

$$\frac{8N^2}{(N+3)(N+1)}\left(1-\frac{2}{N}\right) \quad \text{when } N \ge 3.$$

See Yu et al. (2014).

χ^2 statistic vs. ranking

もってい 正則 ふかく よう ふきゃく しゃ

<日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 0 < 0</p>

Using χ^2 statistic as score

- * Pearson's χ^2 statistics are used to rank significance of SNPs.
- * Higher utility is attainable by increasing ϵ .
- * Sensitivity of the Pearson's χ^2 statistic of an allelic table with positive margins, N/2 cases and N/2 controls is

$$\frac{8N^2}{(N+3)(N+1)}\left(1-\frac{2}{N}\right) \quad \text{ when } N \ge 3.$$

See Yu et al. (2014).

Using Hamming distance as score

D	$\sim D_1$	$\sim \cdots \sim$	$D_{n-1} \sim$	D_n	
	\Downarrow		\Downarrow	\Downarrow	
1	$p p_1$		p_{n-1}	p_n	
(s	ig) (sig)		(sig)	(not sig)	

* Score > 0 only when $D \in \mathcal{D}$ is significant.

- * SNP significance ordering resulting from Hamming distance could be different than that resulting from χ^2 statistic.
- * Sensitive to the choice of the threshold *p*-value.
- * No genotype data for controls: necessary to assume controls are known.

Using Hamming distance as score

$D \sim$	D_1	$\sim \cdots \sim$	$D_{n-1} \sim$	D_n	
\Downarrow	\Downarrow		\Downarrow	\Downarrow	
p	p_1		p_{n-1}	p_n	
(sig)	(sig)		(sig)	(not sig)	

- * Score > 0 only when $D \in \mathcal{D}$ is significant.
- * SNP significance ordering resulting from Hamming distance could be different than that resulting from χ^2 statistic.
- * Sensitive to the choice of the threshold *p*-value.
- * No genotype data for controls: necessary to assume controls are known.

Using Hamming distance as score

$D \sim$	$\sim D_1$	$\sim \cdots \sim$	$D_{n-1} \sim$	D_n	
\Downarrow	\Downarrow		\Downarrow	\Downarrow	
p	p_1		p_{n-1}	p_n	
(sig) (sig)		(sig)	(not sig)	

- * Score > 0 only when $D \in \mathcal{D}$ is significant.
- * SNP significance ordering resulting from Hamming distance could be different than that resulting from χ^2 statistic.
- * Sensitive to the choice of the threshold p-value.
- * No genotype data for controls: necessary to assume controls are known.

Using Hamming distance as score

$D \sim$	$\sim D_1$	$\sim \cdots \sim$	$D_{n-1} \sim$	D_n	
\Downarrow	\Downarrow		\Downarrow	\Downarrow	
p	p_1		p_{n-1}	p_n	
(sig	;) (sig)		(sig)	(not sig)	

- * Score > 0 only when $D \in \mathcal{D}$ is significant.
- * SNP significance ordering resulting from Hamming distance could be different than that resulting from χ^2 statistic.
- * Sensitive to the choice of the threshold *p*-value.
- * No genotype data for controls: necessary to assume controls are known.

Method

Scoring functions

Summary

<日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 0 < 0</p>

Finding the Hamming distance

- * Instead of examining all possible paths, follow the path of the greatest ascent or descent.
- * The resulting path may not have the shortest Hamming distance.

-							
()						10	
\sim	v	6	v		v	v	

Method

Scoring functions

Summary

Finding the Hamming distance

DerGenotype tableGenotype 0 1 2Case g_0 g_1 g_2 N/2

)erive	ed allelic	table	2			
	Allele 0 1					
	Case	n_{00}	n_{01}	\overline{N}		
	Control	n_{10}	n_{11}	N		
		n_0	n_1	2N		

$$\chi^{2} = \frac{2N(n_{00} - n_{10})^{2}}{n_{0}n_{1}} = \frac{2N(2g_{0} + g_{1} - n_{10})^{2}}{(2g_{0} + g_{1} + n_{10})(N - 2g_{0} - g_{1} - n_{10})}$$
$$\nabla\chi^{2} = \left(\frac{\partial}{\partial g_{0}}\chi^{2}, \frac{\partial}{\partial g_{1}}\chi^{2}\right)$$
$$\frac{\partial}{\partial g_{0}}\chi^{2} = 2\frac{\partial}{\partial g_{1}}\chi^{2}$$
$$\frac{\partial}{\partial g_{1}}\chi^{2} \propto \left(\frac{n_{00}}{n_{0}}\frac{n_{11}}{n_{1}} - \frac{n_{01}}{n_{1}}\frac{n_{10}}{n_{0}}\right)\left(\frac{n_{10}}{n_{0}} + \frac{n_{01}}{n_{1}}\right)$$

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Performance of different scoring functions

- * Hamming (distance) outperforms χ^2 when ϵ is small.
- * Utility of Hamming may plateur before it reaches 1.0. (Why?)

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Method

Scoring functions

Summary

Comparison of scoring functions

(日) (日) (日) (日) (日) (日) (日) (日) (日) (日)

Method

Scoring functions

Summary

Summary

- * Extending exponential mechanism LocSig
- * χ^2 statistic as score
- * Hamming distance as score
- * Compare different scoring functions

References

References

- Johnson, Aaron, and Vitaly Shmatikov. 2013. "Privacy-preserving data exploration in genome-wide association studies". In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 1079–1087.
- McSherry, Frank, and Kunal Talwar. 2007. "Mechanism Design via Differential Privacy". 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07) (): 94–103.
- Yu, Fei, et al. 2014. "Scalable Privacy-Preserving Data Sharing Methodology for Genome-Wide Association Studies". *Journal of Biomedical Informatics* (). arXiv: 1401.5193.