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Overview

Task
Select the K most significant SNPs differentially-privately.

* Setting: case-control study.
* Input data: genotype data (e.g., AA, AT, TT) for cases, minor

allele frequencies for controls.
* Ranking significance: p-value corresponding to Pearson’s χ2

test of association between SNP and phenotype.
* Performance evaluation: the proportion of significant SNPs

recovered.
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Overview

* Method is based on the exponential mechanism.
* Two variations of the method. Pros and cons.
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Definitions

Differential privacy

Let D denote the set of all data sets. Write D ∼ D′ if D and D′

differ in one individual. A randomized mechanism K is
ε-differentially private if, for all D ∼ D′ and for any measurable set
S ⊂ R,

Pr(K(D) ∈ S)

Pr(K(D′) ∈ S)
≤ eε.

Sensitivity

The sensitivity of a function f : DN → Rd, where DN denotes the
set of all databases with N individuals, is the smallest number S(f)
such that

||f(D)− f(D′)||1 ≤ S(f),

for all data sets D,D′ ∈ DN such that D ∼ D′.



Overview Method Scoring functions Summary

Exponential mechanism

McSherry and Talwar (2007): Given D = {SNPi}Mi=1, ε
ε
q is a r.v.

with

Pr(εεq(D) = i) ∝ exp

(
εq(D, i)

2∆q

)
µ(i)

∝ exp

(
εq(D, i)

2s

)
where

q(D, i) = the score for SNPi
s = the sensitivity of q(D, ·)

µ(i) = 1/M.

εεq is ε-differentially private.
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Exponential mechanism

We can use any scoring function q(D, ·) with the exponential
mechanism. Examples:

1. χ2 statistic
2. Hamming distance (Johnson and Shmatikov 2013)
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Extending the exponential mechanism

Johnson and Shmatikov (2013): selecting the K most
significant SNPs (LocSig).

1. Initialize S = ∅ and qi = score of SNPi.

2. Set wi = exp
( εqi

2Ks

)
and Pr(εεq(D) = i) = wi

/
M∑
j=1

wj .

3. Sample j ∼ εεq(D). Add SNPj to S. Set qj = −∞.
4. If |S| < K, return to Step 2. Otherwise, output S.

LocSig is ε-differentially private (Yu et al. 2014).
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Performance of different scoring functions

* Hamming (distance)
outperforms χ2 when ε is
small.

* Utility of Hamming may
plateur before it reaches
1.0. (Why?)
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Setup

Assumptions:

* # of cases = # of controls = N/2.
* Case data are private but control data are known.
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Setup

Summarizing a SNP:
* Genotype table is not available. We only know the genotypes

of the cases:

Genotype 0 1 2
Case g0 g1 g2 N/2

* Derived allelic table:

Allele 0 1
Case n00 n01 N
Control n10 n11 N

n0 n1 2N
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Using χ2 statistic as score

* Pearson’s χ2 statistics are used to rank significance of SNPs.
* Higher utility is attainable by increasing ε.

* Sensitivity of the Pearson’s χ2 statistic of an allelic table with
positive margins, N/2 cases and N/2 controls is

8N2

(N + 3)(N + 1)

(
1− 2

N

)
when N ≥ 3.

See Yu et al. (2014).
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χ2 statistic vs. ranking
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Using χ2 statistic as score

* Pearson’s χ2 statistics are used to rank significance of SNPs.
* Higher utility is attainable by increasing ε.

* Sensitivity of the Pearson’s χ2 statistic of an allelic table with
positive margins, N/2 cases and N/2 controls is

8N2

(N + 3)(N + 1)

(
1− 2

N

)
when N ≥ 3.

See Yu et al. (2014).
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Using Hamming distance as score

D ∼ D1 ∼ · · · ∼ Dn−1 ∼ Dn

⇓ ⇓ ⇓ ⇓
p p1 . . . pn−1 pn

(sig) (sig) (sig) (not sig)

* Score > 0 only when D ∈ D is significant.
* SNP significance ordering resulting from Hamming distance

could be different than that resulting from χ2 statistic.
* Sensitive to the choice of the threshold p-value.
* No genotype data for controls: necessary to assume controls

are known.
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Finding the Hamming distance

D ∼ D1 ∼ · · · ∼ Dn−1 ∼ Dn

⇓ ⇓ ⇓ ⇓
p p1 . . . pn−1 pn

(sig) (sig) (sig) (not sig)

* Instead of examining all possible paths, follow the path of the
greatest ascent or descent.

* The resulting path may not have the shortest Hamming
distance.
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Finding the Hamming distance

Partial genotype table
Genotype 0 1 2
Case g0 g1 g2 N/2

Derived allelic table
Allele 0 1
Case n00 n01 N
Control n10 n11 N

n0 n1 2N

χ2 =
2N(n00 − n10)2

n0n1
=

2N(2g0 + g1 − n10)2

(2g0 + g1 + n10)(N − 2g0 − g1 − n10)

∇χ2 =

(
∂

∂g0
χ2,

∂

∂g1
χ2

)
∂

∂g0
χ2 = 2

∂

∂g1
χ2

∂

∂g1
χ2 ∝

(
n00
n0

n11
n1
− n01

n1

n10
n0

)(
n10
n0

+
n01
n1

)
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Performance of different scoring functions

* Hamming (distance)
outperforms χ2 when ε is
small.

* Utility of Hamming may
plateur before it reaches
1.0. (Why?)
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Comparison of scoring functions

χ2 Hamming
Computation Trivial Expensive
Sensitivity Nontrivial; 1

may use upper bounds
Stable Yes Not always
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Summary

* Extending exponential mechanism — LocSig

* χ2 statistic as score
* Hamming distance as score
* Compare different scoring functions
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