
Secure MPC for
Federated Genomic Data Analysis

Scott Constable (PhD),
Anshumali Jain (Ms),
Suyash Rathi (Ms),
Yuzhe Tang (AP)

Computation task (1)
• Statistical analysis (for GWAS): Maf, Chi2

• Goal: Association between a disease and human
genetic feature (SNP).

• Maf: minor allele frequency
• Genotypes of five individuals: AA, AG, AA, AG, and GG.
• G is less frequent than A ==> MAF: 0.4

• Chi2: association test based on frequencies in
control/case

• Algorithmic model: counting

Computation task (2)
• Secure comparison

• Hamming distance
• Approximate edit distance

• Application optimized
• Algorithmic model:

• A merge followed by counting differences.

Implementation framework
PCF (from UVA): portable circuit framework
• A C-like language (w. restrictions)
• A compiler: LCCYao
• An interpreter/runtime: BetterYao:

• Based on garbled circuits/OT
• Note: We tried using GMW protocol which only has low-level circuit interface.

!
Design: How to express the algorithm in PCF variant of C?

Restrictions and solutions
Limited input-data size
• BetterYao limits input be less than 8000 bits
• Challenging to handle big-data inputs
Solutions
• Partition input data

• GWAS: independent genotypes, easy partitioning
• Edit: partition by concatenation of chrome# & pos

Restrictions and solutions
Lack of support for:
● negative number, floating point

computation
Solution:
● Simulated by integer computation:

o “x <<< FPP / y”
o (FPP is floating point precision)

Performance optimization
Computation level:
● Local computation (5~9X)
● Dynamic input encoding
● Merge: Improving from O(n2) to linear.
System level:
● Automatic parallelism on multi-core

o e.g. xarg to run multiple processes with bound

Security guarantee
BetterYao enables security protection under
various models:
• Semi-honest to malicious
!
Leaks input size (e.g. # of lines with chrome 1)

System architecture
Implementation:
• By extending PCF platform
• Automatic dynamic code generator

• Loop length generation (Edit)
• Data partitioning (GWAS)

• Bash to glue the components
!
!

Perf. Results (Networked setting)
Setups
• Local: on one node: shared memory/caches
• LAN: two homogeneous machines in SU LAN
• Internet: two heterogenous machines respectively in UCSD and IUB

10

Perf. Results (Data sizes)

11

Updates to perf. results
On a LAN with 4 core machine:
• MAF: 29.9 seconds (around 5.45 X speed-up)
• Chi2: 56.5 seconds (around 9.33 X speed-up)

12

Acknowledgement
PCF team: https://github.com/cryptouva/pcf/
graphs/contributors
!

13

https://github.com/cryptouva/pcf/graphs/contributors

Questions?

Contact:
Yuzhe Tang
Assistant Professor
Syracuse University
ytang100@syr.edu
ecs.syr.edu/faculty/yuzhe

14

Thank you

mailto:ytang100@syr.edu
http://ecs.syr.edu/faculty/yuzhe

