Efficient Outsourcing GWAS using FHE

Wenjie Lu*, Jun Sakuma* * Dept. of CS, University of Tsukuba, Japan † JST CREST

Secure Outsourcing GWAS

Halevi, Shai, and Victor Shoup. "Algorithms in helib." Advances in Cryptology–CRYPTO 2014. Springer Berlin Heidelberg, 2014. 554-571.

Notations

Allele of M subjects $\boldsymbol{x} = \{AA, Aa, aa\}^M$

$$\boldsymbol{y}_{i}^{\mathrm case} = egin{case} 1 & \mathrm{subject} \; i \; \mathrm{is} \; \mathrm{in} \; \mathrm{the} \; \mathrm{case} \; \mathrm{group} \\ 0 \; \mathrm{otherwise} \end{cases}$$

Vector containing 1 only: $\mathbf{1}$

Scalar Product of vector x and y: $\langle {m x}, {m y}
angle$

Our Encoding for SNPs

$$ar{oldsymbol{x}}_i = egin{cases} 2 & ext{if } oldsymbol{x}_i = AA \ 1 & ext{if } oldsymbol{x}_i = Aa \ 0 & ext{otherwise} \end{cases}$$

Then we have $\langle ar{m{x}}, m{y}^{ ext{case}}
angle = r_2$ А а count (r_2) r_1 а case $\langle \mathbf{1}, \boldsymbol{y}^{\text{case}} \rangle = a$ control r_3 r_4 b (d) Public count n 🛌 С $\langle ar{x}, \mathbf{1}
angle = d$

How to compute scalar product securely and efficiently?

Fully Homomorphic Encryption (FHE)

- Brakerski– Gentry–Vaikuntanathan (BGV)[Brakerski +2012] scheme, implemented by HELib[Halevi+2014]
- The plaintext-space of the BGV scheme is a polynomial ring:

$$R_t := \mathbb{Z}_t[x]/(x^m + 1)$$

• Supports leveled homomorphic multiplication $Dec(Enc(a) \otimes Enc(b)) = a \times b$

Brakerski, Zvika, Craig Gentry, and Vinod Vaikuntanathan. "(Leveled) fully homomorphic encryption without boot strapping." Proceedings of the 3rd Innovations in Theoretical Computer Science Conference. ACM, 2012.

Packing Technique for Efficient Scalar Product

• The plaintext-space of the FHE scheme:

$$R_t := \mathbb{Z}_t[x]/(x^m + 1)$$

is a polynomial ring.

• A vector of integers can be embedded into coefficients of the polynomial such as

$$[1,3,4] \to 1 + 3x + 4x^2$$

 The whole vector can be encrypted as one ciphertext such as

$$\operatorname{Enc}([1+3x+4x^2])$$

Packing Technique for Efficient Scalar Product

[Yasuda et al. 2011]

Two integer vectors

 $\boldsymbol{v} := [v_0, v_1, \cdots, v_{\ell}] \ \boldsymbol{u} := [u_0, u_1, \cdots, u_{\ell}] \ (\ell < m)$

Make two polynomials

ForwardPack $(\boldsymbol{v}) \to V(x) = v_0 + v_1 x + v_2 x^2 + \dots + v_\ell x^\ell$

BackwardPack $(\boldsymbol{u}) \rightarrow U(x) = u_{\ell} + u_{\ell-1}x + u_{\ell-2}x^2 + \dots + u_0x^{\ell}$

The multiplication of V(x), U(x) yields a scalar product

$$V(x)U(x) = \cdots + \langle \boldsymbol{u}, \boldsymbol{v} \rangle x^{\ell} + \cdots$$

Scalar product can be securely and efficiently computed as

$$\operatorname{Enc}(V(x)) \otimes \operatorname{Enc}(U(x))$$

Yasuda, Masaya, et al. "Secure pattern matching using somewhat homomorphic encryption." Proceedings of the 2013 ACM workshop on Cloud computing security workshop. ACM, 2013.

Additive Property I

Prevention of information leakage by randomization

$$V(x)U(x) = \dots + \langle u, v \rangle x^{\ell} + \dots$$

information leak

Random Polynomial $R(x) = r_0 + \cdots + r_{\ell-1}x^{\ell-1} + r_{\ell+1}x^{\ell+1} + \cdots$ r_i is randomly chosen from \mathbb{Z}_t

prevent from information leak by randomization

$$V(x)U(x) + R(x)$$

Outsourcing the computation of Contingency Table

	а	А	count	$\langle ar{m{x}},m{y}^{ ext{case}} angle = r_2$
case	r_1	r_2	a	$\langle 1 \ u^{\text{case}} \rangle = a$
control	r_3	r_4	b	\ 1 , 9 / - a
count	С	d	n 🛶	$\langle ar{m{x}}, m{1} angle = d$

 $\begin{array}{c} \text{Free} \\ \text{for a constraint of the const$

 $\operatorname{Enc}(\operatorname{FPack}(\mathbf{1}))\otimes\operatorname{Enc}(\operatorname{BPack}(\boldsymbol{y}^{\operatorname{case}}))$

cloud

Scheme Parameters

- Parameters of the encryption scheme: plaintext-space parameter t = 20003; polynomial degree m = 4096; levels L = 3
- Security analysis of our scheme parameters[Gentry+2012]

$$m > \frac{(L(\log m + 23) - 8.5)(\kappa + 110)}{7.2}$$

 κ -bit security is guaranteed.

In our settings, $\kappa >= 128$

Gentry, Craig, Shai Halevi, and Nigel P. Smart. "Homomorphic evaluation of the AES circ uit." Advances in Cryptology–CRYPTO 2012. Springer Berlin Heidelberg, 2012. 850-867.

Experiments

- Outsourcing the computation of the contingency table of one SNPs
- the number of subjects varies from 100 to 10,000
- CPU 2.3GHz, RAM 16GB
- FHE implementation: Helib [https://github.com/shaih/HElib]

Experimental Results: Communication Size

Red Line: Lauter et al's encoding Green Line: proposal encoding X-axis: the number of subjects Y-axis: communication size (MB)

Lauter, Kristin, Adriana López-Alt, and Michael Naehrig. "Private computation on encrypted genomic data." 14th Privacy Enhancing Technologies Symposium, Workshop on Genome Privacy 2014

Experimental Results: Computation Time (cloud side)

Red Line: Lauter et al's encoding

Green Line: proposal encoding

X-axis: the number of subjects

Y-axis: computation time (sec)

Merits of the packing technique

- Communication Efficiency: Allele of several thousands of subjects can be packed into a single ciphertext
- Computation Efficiency: Scalar product of two vectors
 needs only a single homomorphic multiplication

Scalability of our method $\boldsymbol{v} := [v_0, v_1, \cdots, v_\ell] \quad \boldsymbol{u} := [u_0, u_1, \cdots, u_\ell]$

When $\,\ell\geq m$, which means the number of subjects is too large

1. Use larger parameter m, (may not be computationally efficient)

2. Partition v, u into smaller pieces

$$oldsymbol{v} o [oldsymbol{v}_1 || oldsymbol{v}_2 || \cdots || oldsymbol{v}_k] \;\; oldsymbol{u} o [oldsymbol{u}_1 || oldsymbol{u}_2 || \cdots || oldsymbol{u}_k] \ \langle oldsymbol{v}, oldsymbol{u}
angle = \sum_{i=1}^k \langle oldsymbol{v}_i, oldsymbol{u}_i
angle$$

Thank you!

An Existent Encoding for SNPs [Lauter et al. 2014]

Encoding for Genotype:

$$\boldsymbol{x}_{i} = \begin{cases} AA & \rightarrow [\operatorname{Enc}(1), \operatorname{Enc}(0), \operatorname{Enc}(0)] \\ Aa & \rightarrow [\operatorname{Enc}(0), \operatorname{Enc}(1), \operatorname{Enc}(0)] \\ aa & \rightarrow [\operatorname{Enc}(0), \operatorname{Enc}(0), \operatorname{Enc}(1)] \end{cases}$$

Encoding for Phenotype:

$$\boldsymbol{y}_{i}^{\mathrm case} = egin{case} 1 &
ightarrow [\mathrm{Enc}(1), \mathrm{Enc}(0)] \\ 0 &
ightarrow [\mathrm{Enc}(0), \mathrm{Enc}(1)] \end{cases}$$

The number of ciphertext of M subjects is 5M for one SNP.

Additive Property II

Data collection from multiple data holders

. .

-

The genotype and phenotype data is hold separately by Alice and Bob

$$\bar{\boldsymbol{x}} = [\bar{\boldsymbol{x}}_{A} | | \bar{\boldsymbol{x}}_{B}] \quad \boldsymbol{y}^{case} = [\boldsymbol{y}^{case}_{A} | | \boldsymbol{y}^{case}_{B}]$$
Party A Enc($\bar{\boldsymbol{x}}_{A}$ 0,0,0,0,...,0) Enc($\boldsymbol{y}^{case}_{A}$ 0,0,0,0,...,0)
Party B \oplus Enc($[0,0,0,0,...,0]$ $\bar{\boldsymbol{x}}_{B}$) \oplus Enc($[0,0,0,0,...,0]$ $\boldsymbol{y}^{case}_{B}$)
Union Enc($\bar{\boldsymbol{x}}_{A}$ $\bar{\boldsymbol{x}}_{B}$) Enc($[\boldsymbol{y}^{case}_{A} | \boldsymbol{y}^{case}_{B}$)

000011