
Sky Faber
University of California: Irvine

Luca Ferretti

University of Modena and Reggio Emilia

Challenge 1 – Task 1 and Challenge 2 – Task 2

Outline

• Challenge 1 Task 1
• Overview
• Encoding
• Aggregation
• Tuning

• Challenge 2 Task 2
• Building Blocks
•  Input parsing
• Edit Distance from PSI-CA
• Optimizations + Performance
• Hamming Distance from PSI-CA

Outline

• Challenge 1 Task 1
• Overview
• Encoding
• Aggregation
• Tuning

• Challenge 2 Task 2
• Building Blocks – PSI-CA
•  Input parsing
• Edit Distance from PSI-CA
• Optimizations + Performance
• Hamming Distance from PSI-CA

Building Blocks -
Private Set Intersection Cardinality

S = {s1,, sw}

Private Set Intersection
Cardinality (PSI-CA)

C = {c1,,cv}

S∩C⊥

Building Blocks – PSI-CA

S = {s1,, sw} C = {c1,,cv}

S∩C⊥

Introduced in “Fast and private computation of cardinality of set intersection and union.”
by De Cristofaro, Gasti, and Tsudik 2012

Rc ← ord(G)

G,H (⋅),H '(⋅)Public Parameters *

Rs ← ord(G)

∀i : ai = H (ci)
Rc

∀j : ts j = H '(H (sj)
Rs) ∀i : a 'i = aΠ(i)

Rs

∀i : tck = H '(a 'i
Rc
−1

)

{ts1,..., tsw}∩{tc1,..., tcv} =

*Must support randomization w/ inverse

Input Processing

Idea – Process each record in VCF into pair (position, nucleotide)

SNP/SUB – For the string at offset
 Output :

DEL – For a del of length at offset
 Output :

INS – For the string inserted at offset
 Output :

Notice all operations map to unique pairs

s1s2...sn p
{(s1, p), (s2, p+1)..., (sn, p+ n−1)}

n p
{(−, p), (−, p+1)..., (−, p+ n−1)}

s1s2...sn p
{(s1, p.1), (s2, p.2)..., (sn, p.n)}

Reducing Edit distance to PSI-CA

Main Idea - use PSI-CA to count the similarities
between genomes by counting common pairs.

As input give all sets of (position,nucleotide) pairs.
Count of matching pairs returned

PROBLEM! – How do we convert a count of common
base pairs to a count of differences when positions
may not match.

Solution – Run PSI-CA again on the positions only

E.G. : S = {(3.3,A)}, C = {3,G}, Edit Dist. = 2, CA = 0
 : S = {(3,A)}, C = {3,G}, Edit Dist. = 1, CA = 0

S

C

Reducing Edit distance to PSI-CA

CB = Number of
 places where (posj, j) (posj, j)

posi = posj ^ i = j

S

C

j i

i = jCP = Number of
 places where

w = size of S

v = size of C

Reducing Edit distance to PSI-CA

Edit Distance = v + w – CP - CB

Number of unique positions between C and S

Still has some inaccuracies – only an upper bound
•  Two multi nucleotide insertions at the same

reference position, but shifted will count improperly
•  Similar with rare, large substitutions

E.G: AGCG vs GCG will be calculated as 4

Optimizations + Performance

Introduced in “Genodroid: are privacy-preserving genomic tests ready for prime time?”
by De Cristofaro, Faber, Gasti, and Tsudik 2012

Pipelining – Process and send as soon as possible.

Threading – Run each instance of PSI-CA in parallel

Group Selection –
•  EC group – Small bandwidth, slow randomization
•  DH group – Larger bandwidth, blazing fast randomization

•  In the right group can have ~160 bit exponents

Protocol sends ~v+w group elements and v hashes
 computes ~2v+w randomizations and v inverses

Optimizations + Performance

Two patients VCFs -100k lines

run in <15 min
~30mb data transfered

About 20% increase in
encryptions

Supporting Hamming Distance

Hamming Distance supported easily by modifying the input
processing.

•  Basic Hamming Distance (Best Performance)

•  Skip all INS and DEL
•  Don’t separate SUB into individual pairs

•  Higher Accuracy Hamming Distance
•  Skip all INS and DEL
•  Separate SUB into individual pairs

•  Highest Accuracy Hamming Distance
•  Skip all DEL
•  Separate SUB into individual pairs
•  Run the protocol once for SNP/SUB and once for INS

•  Final computation for INS modified slightly
•  4 instances of PSI-CA, but same complexity

Security Discussion

•  Security in the Random Oracle Model

•  Secure only against Honest But Curios
Adversaries

•  Security against malicious adversaries could
exist, but would be significantly slower.
Would have to work around H’()

